Окислительно-восстановительные реакции (ОВР) - реакции, сопровождающиеся присоединением или отдачей электронов, или перераспределением электронной плотности на атомах (изменение степени окисления).

Стадии ОВР

Окисление - отдача электронов атомами, молекулами или ионами. В результате степень окисления повышается. Восстановители отдают электроны.

Восстановление - присоединение электронов. В результате степень окисления понижается. Окислители принимают электроны.

ОВР - сопряженный процесс: если есть восстановление, то есть и окисление.

Правила ОВР

Эквивалентный обмен электронов и атомный баланс.

Кислая среда

В кислой среде высвобождающиеся оксид-ионы связываются с протонами в молекулы воды; недостающие оксид-ионы поставляются молекулами воды, тогда из них высвобождаются протоны.

Там, где не хватает атомов кислорода, пишем столько молекул воды, сколько не хватает оксид-ионов.

Сера в сульфите калия имеет степень окисления +4, марганец в перманганате калия имеет степень окисления +7, серная кислота - среда протекания реакции.
Мараганец в высшей степени окисления - окислитель, следовательно, сульфит калия восстановитель.

Примечание: +4 - промежуточная степень окисления для серы, поэтому она может выступать как восстановителем, так и окислителем. С сильными окислителями (перманганат, дихромат) сульфит является восстановителем (окисляется до сульфата), с сильными восстановителями (галогенидами, халькогенидами) сульфит окислитель (восстанавливается до серы или сульфида).

Сера из степени окисления +4 переходит в +6 - сульфит окисляется до сульфата. Марганец из степени окисления +7 переходит в +2 (кислая среда) - перманганат ион восстанавливается до Mn 2+ .

2. Составляем полуреакции. Уравниваем марганец: Из перманганата высвобождаются 4 оксид-иона, которые связываются ионами водорода (кислая среда) в молекулы воды. Таким образом, 4 оксид-иона связываются с 8 протонами в 4 молекулы воды.

Другими словами, в правой части уравнения не хватает 4 кислорода, поэтому пишем 4 молекулы воды, в левой части уравнения - 8 протонов.

Семь минус два - плюс пять электронов. Можно уравнивать по общему заряду: в левой части уравнения восемь протонов минус один перманганат = 7+, в правой части марганец с зарядом 2+, вода электронейтральна. Семь минус два - плюс пять электронов. Все уравнено.

Уравниваем серу: недостающий оксид-ион в левой части уравнения поставляется молекулой воды, из которой впоследствии высвобожается два протона в правую часть.
Слева заряд 2-, справа 0 (-2+2). Минус два электрона.

Умножаем верхнюю полуреакцию на 2, нижнюю на 5.

Сокращаем протоноы и воду.

Сульфат ионы связываются с ионами калия и марганца.

Щелочная среда

В щелочной среде высвобождающиеся оксид-ионы связываются молекулами воды, образуя гидроксид-ионы (OH - группы). Недостающие оксид-ионы поставляются гидроксо-группами, которых надо брать в два раза больше.

Там, где не хватает оксид-ионов пишем гидроксо-групп в 2 раза больше, чем не хватает, с другой стороны - воду .

Пример. Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

Определяем степень окисления:

Висмут (III) с сильными окислителями (например, Cl 2) в щелочной среде проявляет восстановительные свойства (окисляется до висмута V):

Так как в левой части уравнения не хватает 3 кислородов для баланса, то пишем 6 гидроксо-групп, а справа - 3 воды.

Итоговое уравнение реакции:

Нейтральная среда

В нейтральной среде высвобождающиеся оксид-ионы связываются молекулами воды с образованием гидроксид-ионов (OH - групп). Недостающие оксид-ионы поставляются молекулами воды. Из них высвобождаются ионы H + .

Используя метод электронного баланса, составить уравнение реакции, определить окислитель и восстановитель:

1. Определяем степень окисления: сера в персульфате калия имеет степень окисления +7 (является окислителем, т.к. высшая степень окисления), бром в бромиде калия имеет степень окисления -1 (является восстановителем, т.к. низшая степень окисления), вода - среда протекания реакции.

Сера из степени окисления +7 переходит в +6 - персульфат восстанавливается до сульфата. Бром из степени окисления -1 переходит в 0 - бромид ион окисляется до брома.

2. Составляем полуреакции. Уравниваем серу (коэффициент 2 перед сульфатом). Кислород уравнен.
В левой части заряд 2-, в правой части заряд 4-, присоединено 2 электрона, значит пишем +2

Уравниваем бром (коэффициент 2 перед бромид-ионом). В левой части заряд 2-, в правой части заряд 0, отдано 2 электрона, значит пишем -2

3. Суммарное уравнение электронного баланса.

4. Итоговое уравнение реакции: Сульфат ионы связываются с ионами калия в сульфат калия, коэффициент 2 перед KBr и перед K 2 SO 4 . Вода оказалась не нужна - заключаем в квадратные скобки.

Классификация ОВР

  1. Окислитель и восстановитель - разные вещества
  2. Самоокислители, самовосстановители (диспропорционирование, дисмутация) . Элемент в промежуточной степени окисления.
  3. Окислитель или восстановитель - среда для прохождения процесса
  4. Внутримолекулярное окисление-восстановление . В состав одного и того же вещества входят окислитель и восстановитель.
    Твердофазные, высокотемпературные реакции.

Количесвеннная характеристика ОВР

Стандартный окислительно-восстановительный потенциал, E 0 - электродный потенциал относительно стандартного водородного потенциала. Больше об .

Для прохождения ОВР необходимо, чтобы разность потенциалов была больше нуля, то есть потенциал окислителя должен быть больше потенциала восстановителя:

,

Например:

Чем ниже потенциал, тем сильнее восстановитель; чем выше потенциал, тем сильнее окислитель.
Окислительные свойства сильнее в кислой среде, восстановительные - в щелочной.










Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Учебник: Рудзитис Г.Е, Фельдман Ф.Г. Химия: учебник для 9 класса общеобразовательных учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – 12-е изд. – М.: Просвещение, ОАО “Московские учебники”, 2009. – 191 с

Цель: сформировать представление учащихся о окислительно-восстановительных процессах, их механизме

Ожидаемые результаты

Предметные:

В ходе работы учащиеся

приобретут

  • способность анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сохранения здоровья и окружающей среды
  • умение устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, объяснять причины многообразия веществ, зависимость свойств веществ от их строения;

овладеют научным подходом к составлению уравнению окислительно-восстановительных реакций

Метапредметные

В ходе работы учащиеся смогут

  • определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
  • создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
  • применять экологическое мышление в познавательной, коммуникативной, социальной практике и профессиональной ориентации

Личностные

В ходе работы учащиеся приобретут

  • основы экологической культуры соответствующей современному уровню экологического мышления, опыт экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;

2.1. Химическая реакция. Условия и признакипротекания химических реакций. Химическиеуравнения.

2.2. Классификация химических реакций по изменению степеней окисления химических элементов

2.6. Окислительно-восстановительные реакции. Окислитель и восстановитель.

Умения и виды деятельности, проверяемые КИМ ГИА

Знать/понимать

  • химическую символику: формулы химических веществ, уравнения химических реакций
  • важнейшие химические понятия:, степень окисления, окислитель и восстановитель, окисление и восстановление, основные типы реакций в неорганической химии

1.2.1. характерные признаки важнейших химических понятий

1.2.2. о существовании взаимосвязи между важнейшими химическими понятиями

Составлять

2.5.3. уравнения химических реакций.

Форма проведения: урок с использованием ИКТ, включением парных, индивидуальных форм организации учебно-познавательной деятельности учащихся.

Продолжительность учебного занятия: 45 минут.

Использование педагогических технологий: метод эвристического обучения, обучение в сотрудничестве

Ход урока

I. Проблематизация, актуализация, мотивация – 10 мин.

Фронтальная беседа

  • Что такое атомы и ионы.
  • Чем они отличаются?
  • Что такое электроны?
  • Что такое степень окисления?
  • Как рассчитывается степень окисления?

На доске учащимся предлагается расставить степени окисления в следующих веществах:

Сl 2 O 7 , SO 3 , H 3 PO 4 , P 2 O 5 , Na 2 CO 3 , CuSO 4 , Cl 2 , HClO 4 , K 2 Cr 2 O 7 , Cr 2 (SO 4) 3 , Al(NO 3) 3, CaSO 4 ,

NaMnO 4 , MnCl 2 , HNO 3 , N 2 , N 2 O, HNO 2 , H 2 S, Ca 3 (PO 4) 2

II. Изучение нового материала. Объяснение учителя. 15 мин.

Основные понятия (слайд 2):

Окислительно-восстановительные реакции – это реакции, в которых изменяются степени окисления двух элементов, один из которых является восстановителем, а другой – окислителем

Восстановитель – это тот элемент, который в процессе реакции отдает электроны, и сам при этом окисляется

Окислитель – это тот элемент, который в процессе реакции принимает электроны, и сам при этом восстанавливается

Правила составления окислительно-восстановительных уравнений (слайд 3)

1. Запишем уравнение реакции (слайд 4).

CuS+HNO 3 ->Cu(NO 3) 2 + S + NO+H 2 O

2. Расставим степени окисления всех элементов

Cu +2 S -2 +H +1 N +5 O -2 3 -> Cu +2 (N +5 O -2 3) -1 2 + S 0 + N +2 O -2 +H +1 2 O -2

3. Выделим элементы, которые поменяли степени окисления

Cu +2 S -2 +H +1 N +5 O -2 3 -> Cu +2 (N +5 O -2 3) -1 2 + S 0 + N +2 O -2 +H +1 2 O -2

Видим, что в результате реакции поменяли степени окисления два элемента –

  • сера (S) поменяла полностью (от – 2 до 0 )
  • aзот (N) поменял частично (от +5 до +2 поменял), часть осталась +5

4. Выпишем те элементы, которые поменяли степени окисления и покажем переход электронов (слайд 5.)

CuS -2 +HN +5 O 3 -> Cu(N +5 O 3) 2 + S 0 + N +2 O+H 2 O

S -2 - 2e S 0

5. Составим электронный баланс, найдем коэффициенты

6. Подставим в уравнение коэффициенты, найденные в балансе (коэффициенты ставятся у веществ, элементы в которых поменяли степень окисления) (слайд 6).

CuS -2 +HN +5 O 3 -> Cu(N +5 O 3) 2 + 3 S 0 + 2 N +2 O+H 2 O

7. Доставим недостающие коэффициенты методом уравнивания

3CuS -2 +8HN +5 O 3 -> 3Cu(N +5 O 3) 2 + 3S 0 + 2N +2 O+4H 2 O

8. По кислороду проверим правильность составления уравнения (слайд 7).

До реакции кислорода 24 атома = После реакции кислорода 24 атома

9. Выдели окислитель и восстановитель и процессы – окисления и восстановления

S -2 (в CuS) является восстановителем, т.к. отдает электроны

N +5 (в HNO 3) является окислителем, т.к. отдает электроны

III. Закрепление изученного материала (25 мин)

Учащимся предлагается выполнить задание в парах.

Задание 1. 10 мин. (слайд 8)

Учащимся предлагается составить уравнение реакции в соответствии с алгоритмом.

Mg+H 2 SO 4 -> MgSO 4 + H 2 S + H 2 O

Проверка задания

4Mg 0 +5H 2 +1 S +6 O 4 -2 -> 4Mg +2 S +6 O 4 -2 + H 2 +1 S -2 + 4H 2 +1 O -2

Переход е Число электронов НОК Коэффициенты
2 4
1

Задание 2. 15 мин. (слайды 9, 10)

Учащимся предлагается выполнить тест (в парах). Задания теста проверяются и разбираются на доске.

Вопрос № 1

Какое уравнение соответствует окислительно-восстановительной реакции?

  1. CaCO 3 = CaO + CO 2
  2. BaCl 2 + Na 2 SO 4 = BaSO 4 + 2NaCl
  3. Zn + H 2 SO 4 = ZnSO 4 + H 2
  4. Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

Вопрос № 2

В уравнении реакции 2Al + 3Br 2 =2AlBr 3 коэффициент перед формулой восстановителя равен

Вопрос № 3

В уравнении реакции 5Сa + 12HNO 3 = 5Ca(NO 3) 2 + N 2 + 6H 2 O окислителем является

  1. Ca(NO 3) 2
  2. HNO 3
  3. H 2 O

Вопрос № 4

Какая из предложенных схем будет соответствовать восстановителю

  1. S 0 > S -2
  2. S +4 -> S +6
  3. S -2 > S -2
  4. S +6 -> S +4

Вопрос № 5

В уравнении реакции 2SO 2 + O 2 -> 2 SO 3 сера

  1. окисляется
  2. восстанавливается
  3. ни окисляется, ни восстанавливается
  4. и окисляется, и восстанавливается

Вопрос № 6

Какой элемент является восстановителем в уравнении реакции

2KClO 3 -> 2KCl + 3O 2

  1. калий
  2. кислород
  3. водород

Вопрос № 7

Схема Br -1 -> Br +5 соответствует элементу

  1. окислителю
  2. восстановителю
  3. и окислителю, и восстановителю

Вопрос № 8

Соляная кислота является восстановителем в реакции

  1. PbO 2 + 4HCl = PbCl 2 + Cl 2 + 2H 2 O
  2. Zn + 2HCl = ZnCl 2 + H 2
  3. PbО + 2HCl = PbCl 2 + H 2 О
  4. Na 2 CO 3 + 2HCl = 2NaCl+ CO 2 + H 2 O

Ответы на вопросы теста .

номер вопроса 1 2 3 4 5 6 7 8
ответ 3 1 3 2 1 3 2 1

Домашнее задание: параграф 5 упр. 6,7,8 стр. 22 (учебник).

На уроке рассматривается сущность окислительно-восстановительных реакций, их отличие от реакций ионного обмена. Объясняются изменения степеней окисления окислителя и восстановителя. Вводится понятие электронного баланса.

Тема: Окислительно-восстановительные реакции

Урок: Окислительно-восстановительные реакции

Рассмотрим реакцию магния с кислородом. Запишем уравнение этой реакции и расставим значения степеней окисления атомов элементов:

Как видно, атомы магния и кислорода в составе исходных веществ и продуктов реакции имеют различные значения степеней окисления. Запишем схемы процессов окисления и восстановления, происходящих с атомами магния и кислорода.

До реакции атомы магния имели степень окисления, равную нулю, после реакции - +2. Таким образом, атом магния потерял 2 электрона:

Магний отдает электроны и сам при этом окисляется, значит, он является восстановителем.

До реакции степень окисления кислорода была равна нулю, а после реакции стала -2. Таким образом, атом кислорода присоединил к себе 2 электрона:

Кислород принимает электроны и сам при этом восстанавливается, значит, он является окислителем.

Запишем общую схему окисления и восстановления:

Число отданных электронов равно числу принятых. Электронный баланс соблюдается.

В окислительно-восстановительных реакциях происходят процессы окисления и восстановления, а значит, меняются степени окисления химических элементов. Это отличительный признак окислительно-восстановительных реакций .

Окислительно-восстановительными называют реакции, в которых химические элементы изменяют свою степень окисления

Рассмотрим на конкретных примерах, как отличить окислительно-восстановительную реакцию от прочих реакций.

1. NaOH + HCl = NaCl + H 2 O

Для того чтобы сказать, является ли реакция окислительно-восстановительной, необходимо расставить значения степеней окисления атомов химических элементов.

1-2+1 +1-1 +1 -1 +1 -2

1. NaOH + HCl = NaCl + H 2 O

Обратите внимание, степени окисления всех химических элементов слева и справа от знака равенства остались неизменными. Значит, эта реакция не является окислительно-восстановительной.

4 +1 0 +4 -2 +1 -2

2. СН 4 + 2О 2 = СО 2 + 2Н 2 О

В результате данной реакции степени окисления углерода и кислорода поменялись. Причем углерод повысил свою степень окисления, а кислород понизил. Запишем схемы окисления и восстановления:

С -8е =С - процесс окисления

О +2е = О - процесс восстановления

Чтобы число отданных электронов было равно числу принятых, т.е. соблюдался электронный баланс , необходимо домножить вторую полуреакцию на коэффициент 4:

С -8е =С - восстановитель, окисляется

О +2е = О 4 окислитель, восстанавливается

Окислитель в ходе реакции принимает электроны, понижая свою степень окисления, он восстанавливается.

Восстановитель в ходе реакции отдает электроны, повышая свою степень окисления, он окисляется.

1. Микитюк А.Д. Сборник задач и упражнений по химии. 8-11 классы / А.Д. Микитюк. - М.: Изд. «Экзамен», 2009. (с.67)

2. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§22)

3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§5)

4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с.54-55)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003. (с.70-77)

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) ().

2. Единая коллекция цифровых образовательных ресурсов (интерактивные задачи по теме) ().

3. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. №10.40 - 10.42 из «Сборника задач и упражнений по химии для средней школы» И.Г. Хомченко, 2-е изд., 2008 г.

2. Участие в реакции простых веществ - верный признак окислительно-восстановительной реакции. Объясните почему. Напишите уравнения реакций соединения, замещения и разложения с участием кислорода О 2 .

Цель: отработка умений и навыков составления уравнений окислительно-восстановительных процессов с участием органических соединений.

Методы: рассказ, работа с презентацией, обсуждение, самостоятельная работа, коллективная работа.

Преподаватель:

Что же представляют собой окислительно – восстановительные реакции с точки зрения понятия «степень окисления химических элементов»? (слайд 2)

/ Окислительно – восстановительные реакции – это такие реакции, в которых одновременно протекают процессы окисления и восстановления и, как правило, изменяются степени окисления элементов./

Рассмотрим процесс на примере взаимодействия уксусного альдегида с концентрированной серной кислотой:

При составлении этого уравнения используется метод электронного баланса. Метод основан на сравнении степеней окисления атомов в исходных веществах и продуктах реакции. Основное требование при составлении уравнений этим методом: число отданных электронов должно быть равно числу принятых электронов.

    Окислительно - восстановительные реакции – это такие реакции, при которых происходит переход электронов от одних атомов, молекул или ионов к другим.

    Окисление – это процесс отдачи электронов, степень окисления при этом повышается.

    Восстановление – это процесс присоединения электронов, степень окисления при этом понижается.

    Атомы, молекулы или ионы, отдающие электроны, окисляются; являются восстановителями.
    Атомы, ионы или молекулы, принимающие электроны, восстанавливаются; являются окислителями.

    Окисление всегда сопровождается восстановлением, восстановление связано с окислением.

    Окислительно – восстановительные реакции – единство двух противоположных процессов: окисления и восстановления.

Самостоятельная работа № 2 по инструктивной карте: методом электронного баланса найдите и поставьте коэффициенты в следующей схеме окислительно –восстановительной реакции:

MnO 2 + H 2 SO 4 → MnSO 4 + O 2 + H 2 O (2MnO 2 + 2H 2 SO 4 → 2MnSO 4 + O 2 +2H 2 O)

Преподаватель:

Однако научиться находить коэффициенты в ОВР еще не значит уметь их составлять. Нужно знать поведение веществ в ОВР, предусматривать ход реакций, определять состав образующихся продуктов в зависимости от условий реакции.

Для того чтобы разобраться, в каких случаях элементы ведут себя как окислители, а в каких – как восстановители, нужно обратиться к периодической системе Д.И.Менделеева. Если речь идет о простых веществах, то восстановительные свойства должны быть присущи тем элементам, которые имеют больший по сравнению с остальными атомный радиус и небольшое (1 - 3) число электронов на внешнем энергетическом уровне. Поэтому они могут сравнительно легко их отдавать. Это в основном металлы. Наиболее сильными восстановительными свойствами из них обладают щелочные и щелочноземельные металлы, расположенные в главных подгруппах I и II групп (например, натрий, калий, кальций и др.).

Наиболее типичные неметаллы, имеющие близкую к завершению структуру внешнего электронного слоя и значительно меньший по сравнению с металлами того же периода атомный радиус, довольно легко принимают электроны и ведут себя в окислительно-восстановительных реакциях как окислители. Наиболее сильными окислителями являются легкие элементы главных подгрупп VI – VII групп, например фтор, хлор, бром, кислород, сера и др.

Вместе с тем надо помнить, что деление простых веществ на окислители и восстановители так же относительно, как и деление на металлы и неметаллы. Если неметаллы попадают в среду, где присутствует более сильный окислитель, то они могут проявлять восстановительные свойства. Элементы в разных степенях окисления могут вести себя по-разному.

Если элемент имеет свою высшую степень окисления, то он может быть только окислителем. Например, в HN +5 O 3 азот в состоянии + 5 может быть только окислителем и принимать электроны.

Только восстановителем может быть элемент, находящийся в низшей степени окисления. Например, в N -3 Н 3 азот в состоянии -3 может отдавать электроны, т.е. является восстановителем.

Элементы в промежуточных положительных степенях окисления могут, как отдавать, так и принимать электроны и, следовательно, способны вести себя как окислители или восстановители в зависимости от условий. Например, N +3 , S +4 . Попадая в среду с сильным окислителем, ведут себя как восстановители. И, наоборот, в восстановительной среде они ведут себя как окислители.

По окислительно – восстановительным свойствам вещества можно разделить на три группы:

    окислители

    восстановители

    окислители - восстановители

Самостоятельная работа № 3 по инструктивной карте: в какой из приведенных схем уравнений реакций MnO 2 проявляет свойства окислителя, а в какой – свойства восстановителя:

    2MnO 2 + O 2 + 4KOH = 2K 2 MnO 4 + 2H 2 O (MnO 2 – восстановитель)

    MnO 2 + 4HCI = MnCI 2 + CI 2 + 2H 2 O (MnO 2 – окислитель)

Важнейшие окислители и продукты их восстановления

1. Серная кислота - Н 2 SO 4 является окислителем

А) Уравнение взаимодействия цинка с разбавленной Н 2 SO 4 (слайд 3)

Какой ион является окислителем в данной реакции? (H +)

Продуктом восстановления металлом, стоящим в ряду напряжения до водорода, является H2.

Б) Рассмотрим другую реакцию – взаимодействие цинка с концентрированной Н 2 SO 4 (слайд 4)

Какие атомы меняют степень окисления? (цинк и сера)

Концентрированная серная кислота (98%) содержит 2% воды, и соль получается в растворе. В реакции участвуют фактически сульфат – ионы. Продуктом восстановления является сероводород.

В зависимости от активности металла продукты восстановления концентрированной Н 2 SO 4 разные: H 2 S, S, SO 2 .

2. Другая кислота – азотная – также окислитель за счет нитрат – иона NO 3 - . Окислительная способность нитрат – иона значительно выше иона H+, и ион водорода не восстанавливается до атома, поэтому при взаимодействии азотной кислоты с металлами, никогда не выделяется водород, а образуются различные соединения азота. Это зависит от концентрации кислоты и активности металла. Разбавленная азотная кислота восстанавливается глубже, чем концентрированная (для одного и того же металла) (слайд 6)

На схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот

Золото и платина не реагируют с HNO3, но эти металлы растворяются в «царской водке» - смеси концентрированных соляной и азотной кислот в соотношении 3: 1.

Au + 3HCI (конц.) + HNO 3 (конц.) = AuCI 3 + NO + 2H 2 O

3. Наиболее сильным окислителем из числа простых веществ является фтор. Но он слишком активен, и его трудно получить в свободном виде. Поэтому в лабораториях в качестве окислителя используют перманганат калия KMnO 4 . Его окислительная способность зависит от концентрации раствора, температуры и среды.

Создание проблемной ситуации: Я готовила к уроку раствор перманганата калия («марганцовка»), пролила стакан с раствором и испачкала свой любимый химический халат. Предложите (проделав лабораторный опыт) вещество, с помощью которого можно очистить халат.

Реакции окисления – восстановления могут протекать в различных средах. В зависимости от среды может изменяться характер протекания реакции между одними и теми же веществами: среда влияет на изменение степеней окисления атомов.

Обычно для создания кислотной среды добавляют серную кислоту. Соляную и азотную применяют реже, т.к. первая способна окисляться, а вторая сама является сильным окислителем и может вызвать побочные процессы. Для создания щелочной среды применяют гидроксид калия или натрия, нейтральной – воду.

Лабораторный опыт: (правила ТБ)

В четыре пронумерованные пробирки налито по 1-2 мл разбавленного раствора перманганата калия. В первую пробирку добавьте несколько капель раствора серной кислоты, во вторую – воду, в третью – гидроксид калия, четвертую пробирку оставьте в качестве контрольной. Затем в первые три пробирки прилейте, осторожно взбалтывая, раствор сульфита натрия. Отметьте. Как изменяется окраска раствора в каждой пробирке. (слайды 7, 8)

Результаты лабораторного опыта:

Продукты восстановления KMnO 4 (MnO 4) - :

    в кислой среде – Mn+ 2 (соль), бесцветный раствор;

    в нейтральной среде – MnO 2 , бурый осадок;

    в щелочной среде - MnO 4 2- , раствор зеленого цвета. (слайд 9,)

К схемам реакций:

KMnO 4 + Na 2 SO 3 + H 2 SO 4 → MnSO 4 + Na 2 SO 4 + K 2 SO 4 + H 2 O

KMnO 4 + Na 2 SO 3 + H 2 O → MnO 2 ↓ + Na 2 SO 4 + KOH

KMnO 4 + Na 2 SO 3 + КOH → Na 2 SO 4 + K 2 MnO 4 + H 2 O

Подберите коэффициенты методом электронного баланса. Укажите окислитель и восстановитель (слайд 10)

(Задание разноуровневое: сильные учащиеся записывают продукты реакции самостоятельно)

Вы проделали лабораторный опыт, предложите вещество, с помощью которого можно очистить халат.

Демонстрационный опыт:

Пятна от раствора перманганата калия быстро выводятся раствором пероксида водорода, подкисленным уксусной кислотой:

2KMnO 4 + 9H 2 O2 + 6CH 3 COOH = 2Mn(CH 3 COO) 2 +2CH 3 COOK + 7O 2 + 12H 2 O

Старые пятна перманганата калия содержат оксид марганца (IV), поэтому будет протекать еще одна реакция:

MnO 2 + 3H 2 O 2 + 2CH 3 COOH = Mn(CH 3 COO) 2 + 2O 2 + 4H 2 O (слайд 12)

После выведения пятен кусок ткани необходимо промыть водой.

Преподаватель:

Значение окислительно – восстановительных реакций

Цель: Показать учащимся значение окислительно-восстановительных реакций в химии, технологии, повседневной жизни человека. Методы: работа с презентацией, обсуждение, самостоятельная работа, коллективная работа.

В рамках одного урока невозможно рассмотреть все многообразие окислительно-восстановительных реакций. Но их значение в химии, технологии, повседневной жизни человека трудно переоценить. Окислительно-восстановительные реакции лежат в основе получения металлов и сплавов, водорода и галогенов, щелочей и лекарственных препаратов. С окислительно – восстановительными реакциями связано функционирование биологических мембран, многие природные процессы: обмен веществ, брожение, дыхание, фотосинтез. Без понимания сущности и механизмов протекания окислительно-восстановительных реакций невозможно представить работу химических источников тока (аккумуляторов и батареек), получение защитных покрытий, виртуозную обработку металлических поверхностей изделий. Для целей отбеливания и дезинфекции пользуются окислительными свойствами таких наиболее известных средств, как пероксид водорода, перманганат калия, хлор и хлорная, или белильная, известь. Хлор как сильный окислитель используют для стерилизации чистой воды и обеззараживания сточных вод.

Работа с презентацией запись в тетрадь.

Реакции, в ходе которых элементы, входящие в состав реагирующих веществ, изменяют степень окисления, называются окислительно – восстановительными (ОВР).

Степень окисления. Для характеристики состояния элементов в соединениях введено понятие степени окисления. Степень окисления (с.о.) – это условный заряд, который приписывается атому в предположении, что все связи в молекуле или ионе предельно поляризованы. Степень окисления элемента в составе молекулы вещества или иона определяется как число электронов, смещенных от атома данного элемента (положительная степень окисления) или к атому данного элемента (отрицательная степень окисления). Для вычисления степени окисления элемента в соединении следует исходить из следующих положений (правил):

1. Степень окисления элементов в простых веществах, в металлах в элементном состоянии, в соединениях с неполярными связями равны нулю. Примерами таких соединений являютсяN 2 0 , Н 2 0 , Сl 2 0 ,I 2 0 , Мg 0 ,Fe 0 и т.д.

2. В сложных веществах отрицательную степень окисления имеют элементы с большей электроотрицательностью.

Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

О -2 ClО -2 Н + Элемент ЭО

В некоторых случаях степень окисления элемента численно совпадает с валентностью (В) элемента в данном соединении, как, например, в НClО 4 .

Приведенные ниже примеры показывают, что степень окисления и валентность элемента могут численно различаться:

N ≡ N В (N)=3; с.о.(N)=0

Н + C -2 О -2 Н +

ЭО (C) = 2,5 В(С) = 4 с.о.(С) = -2

ЭО (О) = 3,5 В(О) = 2 с.о.(О) = -2

ЭО (Н) = 2,1 В(Н) = 1 с.о.(Н) = +1

3. Различают высшую, низшую и промежуточные степени окисления.

Высшая степень окисления – это ее наибольшее положительное значение. Высшая степень окисления, как правило, равна номеру группы (N) периодической системы, в которой элемент находится. Например, для элементов III периода она равна: Na +2 , Mg +2 , AI +3 , Si +4 , P +5 , S +6 , CI +7 . Исключение составляют фтор, кислород, гелий, неон, аргон, а также элементы подгруппы кобальта и никеля: их высшая степень окисления выражается числом, значение которого ниже, чем номер группы, к которой они относятся. У элементов подгруппы меди, наоборот, высшая степень окисления больше единицы, хотя они и относятся к I группе.

Низшая степень окисления определяется количеством электронов, не достающих до устойчивого состояния атома ns 2 nр 6 . Низшая степень окисления для неметаллов равна (N-8), где N – номер группы периодической системы, в которой элемент находится. Например, для неметаллов III периода она равна: Si -4 , P -3 , S -2 ,CI ˉ. Низшая степень окисления для металлов – это наименьшее ее положительное значение из возможных. Например, марганец имеет следующие степени окисления: Mn +2 , Mn +4 , Mn +6 , Mn +7 ; с.о.=+2 – это низшая степень окисления для марганца.

Все остальные встречающиеся степени окисления элемента называют промежуточными. Например, для серы степень окисления, равная +4, является промежуточной.

4. Ряд элементов проявляют в сложных соединениях постоянную степень окисления:

а) щелочные металлы – (+1);

б) металлы второй группы обеих подгрупп (за исключением Нg) – (+2); ртуть может проявлять степени окисления (+1) и (+2);

в) металлы третьей группы, главной подгруппы – (+3), за исключением Tl, который может проявлять степени окисления (+1) и (+3);

д) H + , кроме гидридов металлов (NaH, CaH 2 и т.д.), где его степень окисления равна (-1);

е) О -2 , за исключением пероксидов элементов (Н 2 О 2 , СаО 2 и т.д.), где степень окисления кислорода равна (-1), надпероксидов элементов

(КО 2 , NaO 2 и т.д.), в которых его степень окисления равна – ½, фторида

кислорода ОF 2 .

5. Большинство элементов могут проявлять разную степень окисления в соединениях. При определении их степени окисления пользуются правилом, согласно которому сумма степеней окисления элементов в электронейтральных молекулах равна нулю, а в сложных ионах – заряду этих ионов.

В качестве примера вычислим степень окисления фосфора в ортофосфорной кислоте Н 3 РО 4 . Сумма всех степеней окисления в соединении должна быть равна нулю, поэтому обозначим степень окисления фосфора через Х и, умножив известные степени окисления водорода (+1) и кислорода (-2) на число их атомов в соединении, составим уравнение: (+1)*3+Х+(-2)*4 = 0, из которого Х = +5.

Вычислим степень окисления хрома в дихромат – ионе (Cr 2 О 7) 2- .

Сумма всех степеней окисления в сложном ионе должна быть равна (-2), поэтому обозначим степень окисления хрома через Х, составим уравнение 2Х +(-2)*7 = -2, из которого Х = +6.

Понятие степени окисления для большинства соединений имеет условный характер, т.к. не отражает реальный эффективный заряд атома. В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного

1 -1 +2 -1 +3 -1

атома к другому: NaI ,MgCI 2 , AIF 3 . Для соединения с полярной ковалентной связью фактический эффективный заряд меньше степени окисления, однако это понятие весьма широко используется в химии.

Основные положения теории ОВР:

1. Окислением называют процесс отдачи электронов атомом, молекулой или ионом. Частицы, отдающие электроны, называют восстановителями; во время реакции они окисляются, образуя продукт окисления. При этом элементы, участвующие в окислении, повышают свою степень окисления. Например:

AI – 3e -  AI 3+

H 2 – 2e -  2H +

Fe 2+ - e -  Fe 3+

2. Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом. Частицы, присоединяющие электроны, называютокислителями; во время реакции они восстанавливаются, образуя продукт восстановления. При этом элементы, участвующие в восстановлении, понижают свою степень окисления. Например:

S + 2e -  S 2-

CI 2 + 2e -  2 CI ˉ

Fe 3+ + e -  Fe 2+

3.Вещества, содержащие частицы восстановители или окислители, соответственно называют восстановителями или окислителями. Например, FeCI 2 является восстановителем за счет Fe 2+ , а FeCI 3 - окислителем за счет Fe 3+ .

4. Окисление всегда сопровождается восстановлением и, наоборот, восстановление всегда связано с окислением. Таким образом ОВР представляют собой единство двух противоположенных процессов – окисления и восстановления

5. Число электронов, отданных восстановителем, равно числу электронов, принятых окислителем.

Составление уравнений окислительно-восстановительных реакций. На последнем правиле базируются два метода составления уравнений для ОВР:

1. Метод электронного баланса.

Здесь подсчет числа присоединяемых и теряемых электронов производится на основании значений степеней окисления элементов до и после реакции. Обратимся к простейшему примеру:

Na 0 + Cl  Na + Cl

2Na 0 – eˉ  Na + - окисление

1 Cl 2 + 2eˉ  2 Cl - восстановление

2 Na + Cl 2 = 2Na + + 2Cl

2 Na + Cl 2 = 2NaCl

Данный метод используют в том случае, если реакция протекает не в растворе (в газовой фазе, реакции термического разложения и т.д.).

2. Метод ионно-электронный (метод полуреакций).

Данный метод учитывает среду раствора, дает представление о характере частиц реально существующих и взаимодействующих в растворах. Остановимся на нем более подробно.

Алгоритм подбора коэффициентов ионно-электронным методом:

1. Составить молекулярную схему реакции с указанием исходных веществ и продуктов реакции.

2. Составить полную ионно-молекулярную схему реакции, записывая слабые электролиты, малорастворимые, нерастворимые и газообразные вещества в молекулярном виде, а сильные электролиты – в ионном.

3. Исключив из ионно-молекулярной схемы ионы, не изменяющиеся в результате реакции (без учета их количества), переписать схему в кратком ионно-молекулярном виде.

4. Отметить элементы, изменяющие в результате реакции степень окисления; найти окислитель, восстановитель, продукты восстановления, окисления.

5. Составить схемы полуреакций окисления и восстановления, для этого:

а) указать восстановитель и продукт окисления, окислитель и продукт восстановления;

б) уравнять число атомов каждого элемента в левой и правой частях полуреакций (выполнить баланс по элементам) в последовательности: элемент, изменяющий степень окисления, кислород, другие элементы; при этом следует помнить, что в водных растворах в реакциях могут участвовать молекулы Н 2 О, ионы Н + или ОН – в зависимости от характера среды:

в) уравнять суммарное число зарядов в обеих частях полуреакций; для этого прибавить или отнять в левой части полуреакций необходимое число электронов (баланс по зарядам).

6. Найти наименьшее общее кратное (НОК) для числа отданных и полученных электронов.

7. Найти основные коэффициенты при каждой полуреакции. Для этого полученное в п.6 число (НОК) разделить на число электронов, фигурирующих в данной полуреакции.

8. Умножить полуреакции на полученные основные коэффициенты, сложить их между собой: левую часть с левой, правую – с правой (получить ионно-молекулярное уравнение реакции). При необходимости “привести подобные” ионы с учетом взаимодействия между ионами водорода и гидроксид-ионами: H + +OH ˉ= H 2 O.

9. Расставить коэффициенты в молекулярном уравнении реакции.

10. Провести проверку по частицам, не участвующим в ОВР, исключенным из полной ионно-молекулярной схемы (п.3). При необходимости коэффициенты для них находят подбором.

11. Провести окончательную проверку по кислороду.

1. Кислая среда.

Молекулярная схема реакции:

KMnO 4 + NaNO 2 + H 2 SO 4  MnSO 4 + NaNO 3 + H 2 O + K 2 SO 4

Полная ионно-молекулярная схема реакции:

K + +MnO+ Na + +NO+2H + + SO Mn 2+ + SO+ Na + + NO+ H 2 O + 2K + +SO.

Краткая ионно-молекулярная схема реакции:

MnO+NO+2H +  Mn 2+ + NO+ H 2 O

ок-ль в-ль продукт в-ния продукт ок-ия

В ходе реакции степень окисления Mn понижается от +7 до +2 (марганец восстанавливается), следовательно, MnО– окислитель;Mn 2+ - продукт восстановления. Степень окисления азота повышается от +3 до +5 (азот окисляется), следовательно, NO– восстановитель, NO – продукт окисления.

Уравнения полуреакций:

2MnO + 8 H + + 5e - Mn 2+ + 4 H 2 O - процесс восстановления

10 +7 +(-5) = +2

5 NO + H 2 O – 2e - NO + 2 H + - процесс окисления

2MnO+ 16H + + 5NO+ 5H 2 O = 2Mn 2+ +8H 2 O + 5NO + 1OH + (полное ионно-молекулярное уравнение).

В суммарном уравнении исключаем число одинаковых частиц, находящихся как в левой, так и в правой частях равенства (приводим подобные). В данном случае это ионы Н + и Н 2 О.

Краткое ионно-молекулярное уравнение будет иметь вид

2MnO + 6H + + 5NO  2Mn 2+ + 3H 2 O + 5NO.

В молекулярной форме уравнение имеет вид

2KMnO 4 + 5 NaNO 2 + 3 H 2 SO 4 = 2MnSO 4 +5NaNO 3 + 3H 2 O + K 2 SO 4 .

Проверим баланс по частицам, которые не участвовали в ОВР:

K + (2 = 2), Na + (5 = 5), SO(3 = 3). Баланс по кислороду: 30 = 30.

2. Нейтральная среда.

Молекулярная схема реакции:

KMnO 4 + NaNO 2 + H 2 O  MnO 2 + NaNO 3 + KOH

Ионно-молекулярная схема реакции:

K + + MnO+ Na + + NO+ H 2 O  MnO 2 + Na + + NO+ K + + OH

Краткая ионно-молекулярная схема:

MnO+ NO+ H 2 O  MnO 2 + NO+ OH -

ок-ль в-ль продукт в-ния продукт ок-ия

Уравнения полуреакций:

2MnO+ 2H 2 O+ 3eˉ MnO 2 +4OH-процесс восстановления

6 -1 +(-3) = -4

3 NO+H 2 O– 2eˉ NO+ 2H + - процесс окисления