Пищеварительные ферменты – это вещества белковой природы, которые вырабатываются в желудочно-кишечном тракте. Они обеспечивают процесс переваривания пищи и стимулируют ее усвоение.

Основной функцией пищеварительных ферментов является разложение сложных веществ на более простые, которые легко усваиваются в кишечнике человека.

Действие белковых молекул направлено на следующие группы веществ:

  • белки и пептиды;
  • олиго- и полисахариды;
  • жиры, липиды;
  • нуклеотиды.

Виды ферментов

  1. Пепсин. Фермент представляет собой вещество, которое вырабатывается в желудке. Он воздействует на белковые молекулы в составе пищи, разлагая их на элементарные составляющие – аминокислоты.
  2. Трипсин и химотрипсин. Эти вещества входят в группу панкреатических ферментов, которые вырабатываются поджелудочной железой и доставляются в двенадцатиперстный кишечник. Здесь они также воздействуют на белковые молекулы.
  3. Амилаза. Фермент относится к веществам, разлагающим сахара (углеводы). Амилаза вырабатывается в ротовой полости и в тонком кишечнике. Она разлагает один из главных полисахаридов – крахмал. В результате получается небольшой углевод – мальтоза.
  4. Мальтаза. Фермент также воздействует на углеводы. Его специфическим субстратом является мальтоза. Она разлагается на 2 молекулы глюкозы, которые всасываются стенкой кишечника.
  5. Сахараза. Белок воздействует на другой распространенный дисахарид — сахарозу, которая содержится в любой высокоуглеводной пище. Углевод распадается на фруктозу и глюкозу, легко усваивающиеся организмом.
  6. Лактаза. Специфический фермент, который воздействует на углевод из молока – лактозу. При ее разложении получаются другие продукты – глюкоза и галактоза.
  7. Нуклеазы. Ферменты из данной группы воздействуют на нуклеиновые кислоты – ДНК и РНК, которые содержатся в пище. После их воздействия вещества распадаются на отдельные составляющие – нуклеотиды.
  8. Нуклеотидазы. Вторая группа ферментов, которая воздействует на нуклеиновые кислоты, называется нуклеотидазами. Они разлагают нуклеотиды с получением более мелких составляющих – нуклеозидов.
  9. Карбоксипептидаза. Фермент воздействует на небольшие белковые молекулы – пептиды. В результате такого процесса получаются отдельные аминокислоты.
  10. Липаза. Вещество разлагает жиры и липиды, поступающие в пищеварительную систему. При этом образуются их составные части – спирт, глицерин и жирные кислоты.

Недостаток пищеварительных ферментов

Недостаточная выработка пищеварительных ферментов – это серьезная проблема, которая требует врачебного вмешательства. При небольшом количестве эндогенных энзимов пища не сможет нормально перевариваться в кишечнике человека.

Если вещества не перевариваются, то они не могут всасываться в кишечнике. Пищеварительная система способна усвоить только небольшие фрагменты органических молекул. Большие компоненты, которые входят в состав еды, не смогут принести пользу человеку. Вследствие этого в организме может развиться недостаточность тех или иных веществ.

Нехватка углеводов или жиров приведет к тому, что организм лишится «топлива» для активной деятельности. Недостаточность белков лишает тело человека строительного материала, которым являются аминокислоты. Кроме того, нарушение пищеварения приводит к изменению характера кала, которое может неблагоприятно влиять на характер .

Причины

  • воспалительные процессы в кишечнике и желудке;
  • нарушения характера питания (переедание, недостаточная термическая обработка);
  • болезни обмена веществ;
  • панкреатит и другие болезни поджелудочной железы;
  • поражение печени и желчных путей;
  • врожденные патологии ферментной системы;
  • послеоперационные последствия (недостаточность энзимов из-за удаления части пищеварительной системы);
  • лекарственные воздействия на желудок и кишечник;
  • беременность;

Симптомы

Длительное сохранение недостаточности пищеварения сопровождается появлением общих симптомов, связанных с пониженным поступлением питательных веществ в организм. В данную группу входят следующие клинические проявления:

  • общая слабость;
  • снижение работоспособности;
  • головные боли;
  • нарушения сна;
  • повышенная раздражительность;
  • в тяжелых случаях – симптомы анемии из-за недостаточного усвоения железа.

Избыток пищеварительных ферментов

Избыток пищеварительных ферментов наиболее часто наблюдается при таком заболевании, как панкреатит. Состояние связано с гиперпродукцией этих веществ клетками поджелудочной железы и нарушением их выведения в кишечник. В связи с этим развивается активное воспаление в ткани органа, вызванное воздействием ферментов.

Признаками панкреатита могут быть:

  • сильные боли в области живота;
  • тошнота;
  • вздутие;
  • нарушение характера стула.

Часто развивается общее ухудшение состояния больного. Появляется общая слабость, раздражительность, снижается масса тела, нарушается нормальный сон.

Как выявить нарушения в синтезе пищеварительных ферментов?

Основные принципы терапии ферментных нарушений

Изменение выработки пищеварительных ферментов является поводом для обращения к врачу. После проведения комплексного обследования доктор определит причину возникновения нарушений и назначит соответствующее лечение. Самостоятельно бороться с патологией не рекомендуется.

Важным компонентом лечения является правильное питание. Больному назначается соответствующая диета, которая направлена на облегчение переваривания пищи. Необходимо избегать переедания, так как это провоцирует кишечные расстройства. Пациентам назначается лекарственная терапия, в том числе и заместительное лечение .

Конкретные средства и их дозировки подбираются врачом.

Ферменты (от лат. Fermentum - брожение ) , или энзимы (от греч. Эп - внутри, sume - закваска ) - белковые соединения, которые являются биологическими катализаторами. Наука о ферментах называется энзимология. Молекулы ферментов являются белками или рибонуклеиновой кислоты (РНК). РНК-ферменты называются рибозимами и считаются первоначальной формой ферментов, которые были заменены белковыми ферментами в процессе эволюции.

Структурно-функциональная организация. Молекулы ферментов имеют большие размеры, чем молекулы субстратов и сложную пространственную конфигурацию, в основном глобулярной структуры.

Благодаря большим размерам молекул ферментов возникает сильное электрическое поле, в котором: а) ферменты приобретают асимметричной формы, ослабляет связи и обусловливает изменение их структуры; б) становится возможным ориентация молекул субстрата. Функциональная организация ферментов связана с центр - это особая небольшой участок молекулы белка, которая может связывать субстрат и обеспечивать таким образом каталитическую активность фермента. Активный центр простых ферментов представляет собой сочетание определенных аминокислот цепи с образованием своеобразной «карманы», в которой происходят каталитические превращения субстрата. В сложных ферментов количество активных центров равно числу субъединиц, и ими являются кофакторы с прилегающими к нему белковыми функциональными группами. Кроме ативно центра, некоторые ферменты имеют аллостерический центр, регулирующий работу активного центра.

Свойства . Между ферментами и катализаторами неорганической природы существуют определенные общие и отличительные признаки. Общим является то, что они: а) могут катализировать только термодинамически возможные реакции и ускоряют только те реакции, которые могут происходить и без них, но с меньшей скоростью; б) не используются во время реакции и не входят в состав конечных продуктов; б) не смещают химического равновесия, а лишь ускоряют ее наступление. Для ферментов характерны и некоторые специфические свойства, которых нет у неорганические катализаторы.

Ферменты не разрушаются в реакциях, поэтому очень малая их количество вызывает превращение большого количества субстрата например, 1 молекула каталазы может расщепить за 1 мин более 5 млн молекул Н2O2). Зоны ускоряют скорость химических реакций при обычных условиях, но сами при этом не расходуются. Все это вместе обусловливает такое свойство ферментов, как высокая биологическая активность . Оптимальное действие большинства ферментов проявляется при температуре 37-40 ° С. С повышением температуры активность ферментов снижается и впоследствии совсем прекращается, а за + 80 ° С происходит их разрушение. При низких температурах (ниже 0 ° С) ферменты прекращают свое действие, но не разрушаются. Итак, для ферментов характерна термочувствительность.

Ферменты проявляют свою активность при определенной концентрации ионов Н, поэтому говорят о pH-зависимость. Оптимальная действие большинства ферментов наблюдается в среде, близкой к нейтральной.

Такое свойство, как специфичность, или селективность проявляется в том, что каждый фермент действует на определенный субстрат, катализируя только одну "свою" реакцию. Избирательность действия ферментов определяется белковым компонентом.

Ферменты являются катализаторами с регулируемой активностью, которая может существенно изменяться под влиянием определенных химических соединений, которые увеличивают или уменьшают скорость реакции, катализируемой. В качестве активаторов выступают катионы металлов, анионы

кислот, органические вещества, а ингибиторами - катионы тяжелых металлов и др. Это свойство назвали управляемость действия (алостеричнисть ). Ферменты образуются только тогда, когда возникает субстрат, который индуцирует его синтез (индуцибельнисть ), а "отключения" действия ферментов, как правило, осуществляется избытком продуктов ассимиляции (репресибельнисть ). Ферментативные реакции являются обратимыми, что обусловлено способности ферментов катализировать прямую и обратную реакцию. Так, например, липаза может при определенных условиях расщепить жир до глицерина и жирных кислот, а также катализировать его синтез из продуктов распада (возвратность действия ).

Механизм действия. Для понимания механизма действия ферментов на протекание химических реакций важны теория активного центра, гипотеза "ключ-замок" и гипотеза индуцированного соответствия. Согласно теории активного центра, в молекуле каждого фермента одна или более участков, в которых за счет тесного контакта между ферментом и субстратом происходит Биокатализ. Гипотеза "ключ-замок" (1890, Э. Фишер) объясняет специфичность ферментов соответствием формы фермента (замок) и субстрата (ключ). Фермент сочетается с субстратом с образованием временного фермент-субстратного комплекса. Гипотеза индуцированной соответствии (1958, Д. Кошланда). базируется на утверждении о том, что ферменты являются гибкими молекулами, благодаря чему в них в присутствии субстрата конфигурация активного центра претерпевает изменения, то есть фермент ориентирует свои функциональные группы так, чтобы обеспечить наибольшую каталитическую активность. Молекула субстрата, присоединяясь к ферменту, также меняет свою конфигурацию для увеличения реакционной способности.

Разнообразие . В современной энзимологии известно свыше 3000 ферментов. Ферменты, как правило, классифицируют по химическому составу и по типу реакций, на которые они влияют. Классификация ферментов по химическому составу включает простые и сложные ферменты. Простые ферменты (однокомпонентные ) - содержат только белковую часть. Большинство ферментов этой группы могут кристаллизоваться. Примером простых ферментов является рибонуклеаза, гидролазы (амилазы, липазы, протеазы), уреаза и др. Сложные ферменты (двухкомпонентные ) - состоят из апофермента и кофактора. Белковый компонент, который определяет специфичность сложных ферментов и синтезируется, как правило, организмом и является чувствительным к температуры - это апофермент. Небелковый компонент, определяющий активность сложных ферментов и, как правило, поступает в организм в виде предшественников или в готовом виде, и сохраняет стабильность при неблагоприятных условиях, является кофактором. Кофакторы могут быть как неорганическими молекулами (например, ионы металлов), так и органическими (например, флавин). Органические кофакторы, постоянно связаны с ферментом, называют простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами. сложных ферментов является оксидоредуктаз (например, каталаза), лигазы (например, ДНК-полимераза, тРНК-синтетазы), лиазы и др.

Ферментативные реакции делятся на анаболических (реакции синтеза) и катаболитични (реакции распада), а совокупность всех этих процессов в живой системе называют метаболизмом. В рамках этих групп процессов выделяют типы ферментативных реакций, согласно которым ферменты делят на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.

1. Оксидоредуктазы катализируют окислительно-восстановительные реакции (перенос электронов и атомов Н от одних субстратов на другие).

2. Трансферазы ускоряют реакции трансферации (перенос химических групп от одних субстратов на другие).

3. Гидролазы являются ферментами реакций гидролиза (расщепления субстратов с участием воды).

4. Лиазы катализируют реакции негидролитичного распада (расщепление субстратов без участия воды с образованием двойной связи и без использования энергии АТФ).

5. Изомеразы влияют на скорость реакций изомеризации (внутримолекулярный перемещения различных групп).

6. Лигазы катализируют реакции синтеза (сочетание молекул с использованием энергии АТФ и образованием новых связей).

Обычно фермент называют по типу реакции, которую он катализирует, добавляя суффикс -аза к названию субстрата (например, лактаза - фермент, участвующий в превращении лактозы).

Значения. Ферменты обеспечивают химические превращения веществ вследствие снижения энергии активации, то есть в снижении уровня энергии, необходимой для предоставления реакционной способности молекуле (например, для разрыва связи между азотом и Карбоном в лабораторных условиях необходимо около 210 кДж, тогда как в биосистема на это расходуется только 42-50 кДж). Ферменты имеющиеся во всех живых клетках способствуют превращению одних веществ (субстратов) на другие (продукты). Энзимы выступают в роли катализаторов практически во всех биохимических реакциях, происходящих живых организмах - ими катализируется около 4000 химически отдельных биореакции Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляю или и регулируя обмен веществ организма. Ферменты широко используются хозяйстве.

Некоторые примеры использования ферментов в деятельности человека

отрасль

ферменты

Использование

пищевая промышленность

Пектиназа

Для освещения фруктовых соков

глюкозооксидаза

Для сохранения мяса, соков, пива как антисжиснювач

Для расщепления крахмала до глюкозы, которую сбраживают дрожжи в процессе выпечки хлеба

Пепсин, трипсин

Для производства «готовых» каш, продуктов детского питания

Для производства сыра

Легкая промышленность

Пептигидролизы

Для размягчения кож и удаления из них шерсти

фармацевтическая промышленность

Для удаления зубного налета в составе зубных паст

коллагеназы

Для очистки ран от ожогов, обморожений, варикозных язв в составе мазей и новых типов повязок

Химическая промышленность

бактериальные протеазы

Для стирки белья с помощью биопорошков с ферментными добавками

Сельское хозяйство

целлюлаза

Кормовые ферменты для увеличения питательной ценности кормов

бактериальные протеазы

Для получения кормовых белков

генная инженерия

Лигазы и рестриктазы

Для разрезания и сшивания молекул ДНК с целью видоизменения их наследственной информации

косметическая промышленность

Калагеназы

Для омоложения кожи в составе кремов и масок

Нуклеиновые кислоты - это соединения, которые связывают прошлое с будущим.

Организм каждого живого существа состоит из большого количества клеток. В их состав входят структурные тела, между которыми происходят различные биохимические реакции. Каждую химическую реакцию контролируют важные компоненты. Ферменты: их функции, классификация и роль в организме.

Их в организме огромное количество и каждый занят своим делом: одни из них разрывают связи в органических соединениях, а другие, напротив их образуют, ускоряя синтез новых веществ.

Некоторые могут оказывать воздействие на молекулы, изменяя их структуру, а другие — выполняют защитную роль, разрушая чужеродные структуры, попавшие внутрь организма. Какие-то, просто исполняют транспортные функции, но не менее важные, чем остальные для организма.

Роль ферментов в организме человека

Что это такое. Ферменты в организме представлены белковыми молекулами или молекулами РНК, ускоряющими ход любой химической реакции. Его основными функциями являются расщепление, а также образование совершенно новых и жизненно необходимых веществ. Их еще называют — энзимы, слово идет от латинского «fermentum», что означает закваска и насчитывается их свыше 4000 тысяч или биокатализаторами.

В природе нет более сильных катализаторов, имеющих способность сильно ускорить процесс жизнедеятельности. Благодаря им, реакции в клетках протекают быстрее и активнее в миллиарды раз.

Любопытно, что… Всего лишь одна микроскопическая молекула фермента каталазы, чудодейственным образом, лишь за одну секунду, разрушает связи в 10 тыс. молекул перекиси водорода, которые образуются в процессе окислительных реакций организма, и превращает их в воду и кислород.

Они могут контролировать все необходимые процессы расщепления, дыхания, кровообращения, синтеза и обмена веществ, размножения. Без их участия невозможно мышечное сокращение и проведение нервных импульсов. Даже отсутствие одного из тысячной армии энзимов, может привести к серьезным последствиям.

Мне понравилось одно сравнение, которое я встретила на одном из форумов обсуждаемых этот вопрос. Поскольку, без fermentum не обходится ни одна химическая реакция в организме, ни один процесс, связанный с обменом веществ или генетической информацией. Один из собеседников сравнивает их с рабочими, без которых никак не обойтись, если бы вы собирались строить свой дом.

Любой элемент живого организма имеет собственный набор весьма непростых и очень интересных биокатализаторов. В момент полного исключения, либо значительного снижения какого-либо из них, в человеческом организме могут происходить сильные изменения, способные привести к той или иной патологии.

Где они находятся

Основная их часть связана с определенными клеточными органоидами, где и проявляют свои функции. В ядрах клеток находятся энзимы, ответственные за синтез ДНК и построение РНК (по транскрипции ДНК), в митохондриях находятся биокатализаторы, ответственные за пополнение энергии, а те которые способствуют разрыву связей между аминокислотами, образующими белок или нуклеиновыми кислотами «живут» в лизосомах.

Какие условия благоприятны для биокатализаторов

В основном реакции с их участием проходят в слабощелочной, слабокислой или нейтральной среде. Но все же, для каждой молекулы есть различия в значениях pH среды.

Температурные показатели у всех теплокровных и у человека, наиболее благоприятны при значениях от 37 — до 40 градусов.

А вот у растений, даже в период зимнего отдыха, при температуре ниже 0 градусов, активность биокатализаторов не прекращается.

Но температура выше 70 градусов для них губительна, поскольку по своему строению они являются белковыми молекулами и при таком показателе происходит их денатурация (разрушение).

Классификация

Известны 2 ферментные группы с учетом формы их строения:

  1. Простые, имеющие белковую природу. Они самостоятельно вырабатываются организмом.
  2. Сложные, имеющие небелковое основание и белковые компоненты. К небелковым молекулам относятся вещества, не имеющие способности синтезироваться в живом организме и поэтому попадают в него вместе с потребляемыми продуктами. Их принято называть коферментами. К таким веществам относятся: все витамины группы В, С и некоторое число микроэлементов.

Подразделение по функциональности. Например, пищеварительные, отвечающие за все процессы расщепления питательных веществ. Такие молекулы в большей части располагаются в слюне, а также во всех слизистых оболочках, желудка и поджелудочной.

По типу катализируемых реакций , в медицине выделяются:

  • амилазу, которая способствует расщеплению сложного сахара до простого (фермент в последствии может принимать активное участие во всех процессах жизнедеятельности);
  • липазу, принимающую активное участие в гидролизе жирных кислот и способствует разбитию жиров до таких компонентов, которые в последствии будут легко усваиваться организмом;
  • протеазу, способствующую расщеплению белков до состояния аминокислот.

Имеются и метаболические . Они принимают достаточно активное участие в окислительно-восстановительных реакциях, а также в синтезе белка.

Защитные ферменты , принимающие активное участие в защите всего организма. Они способны предотвратить возникновение вредоносных бактерий, а также вирусов, а в случае их попадания, в состоянии оказать достойное противостояние.

Самым важным ферментом этой группы является лизоцим, способствующий полному расщеплению оболочки болезнетворной бактерии, после чего происходит активация большого количества иммунных реакций, способных, в свою очередь, защитить организм от возможных процессов воспаления.

По выполняемым функциям :

Функции у всех разные. Каждый из них выполняет (катализирует) только один биохимический процесс. Согласно типам катализируемых реакций, ферменты подразделяются на несколько классов:

  1. Оксидоредуктазы. Эта группа принимает активное участие во всех окислительно-восстановительных реакциях. В процессе реакций ферменты помогают переносить электроны и водород и катализируют окислительные процессы. К ним относятся: дегидрогеназа, пероксидаза, оксидаза),
  2. Трансферазы. Они несут огромную ответственность за перенос всех атомных групп, карбоксильных, амино-, сульфо-формильных и фосфорильных, а также способствуют расщеплению и синтезу белка.
  3. Гидролазы. Способствует расщеплению ненужных связей и помогает водным молекулам встраиваться в общий состав организма. Известные представители этой группы: уреаза, фосфотаза, астераза, амилаза, липаза, гликозидаза),
  4. Изомеразы. Являются некими преобразователями всевозможных веществ в организме.
  5. Лиазы. Принимают активное участие в тех реакциях, которые способствуют образованию метаболических веществ и воды, (путем отщепления СО2, Н2О, NН3) от исходного вещества. К ним относятся: лиаза, декаминаза, декарбоксилаза, дегидратаза,
  6. Лигазы. Способствуют превращению сложных веществ в простые. Принимают активное участие в синтезе белков, углеводов, жирных кислот.

Опасен ли дефицит биокатализаторов для здоровья

Недостаточность энзимов по своему происхождению подразделяется на 2 типа – это врожденная и приобретенная. В первом случае такой недуг способен активно развиваться на генном уровне, либо на фоне нарушений или недугов железы поджелудочной. При этом, может быть оказано любое лечение, все зависит оттого, что именно спровоцировало недуг.

Врожденный недостаток энзимов, равно как их переизбыток приводит к развитию заболеваний и даже смерти, а заболеваний несколько и их объединяют в группу под названием энзимопатии.

  • Когда нарушается синтез катализатора, ответственного за преобразование галактозы в глюкозу, возникает наследственное заболевание у детей — галактоземия.
  • При фенилкетонурии — нарушается психическая деятельность из-за неспособности организма синтезировать энзим, который участвует в превращении фенилаланина в тирозин.

Поэтому, по активности этих веществ в моче, крови, семенной жидкости или спинно-мозговой, можно установить тот или иной диагноз. Для этого сдаются анализы на ферменты, которые позволяют выявить заболевания на ранней стадии их развития, например, панкреатит и нефрит, вирусный гепатит и инфаркт миокарда.

Причины нехватки энзимов у детей

Что касается приобретенной степени развития заболевания у детей, то недуг возникает в результате некоторых перенесенных патологий:

  • те или иные заболевания поджелудочной;
  • всевозможные инфекционные болезни;
  • любые заболевания с тяжелым течением;
  • нарушение кишечной флоры;
  • интоксикации при чрезмерном использовании тех или иных медикаментозных препаратов;
  • пребывания в достаточно неблагоприятной экологической обстановке;
  • при истощении организма, которое было вызвано недостатком белка и полезных витаминов.

Основными причинами наличия недостаточности у детей до года являются инфицирование всего организма и плохое питание. Конечно же, спровоцировать подобного рода нарушения могут и иные факторы.

Как отдельный недуг, нехватка биокатализаторов отрицательно воздействует на все процессы пищеварения. Любое проявление недуга сказывается на самочувствии ребенка и характере его стула.

Симптоматикой является:

  • наличие жидкого кала;
  • значительное понижение аппетита малыша;
  • чувство тошноты и даже рвота;
  • ребенок начинает резко и беспричинно худеть;
  • физическое развитие притупляется;
  • может появиться вздутие живота, а также некоторые болезненные ощущения, которые могут быть вызваны процессами гниения пищи.

То, что у малыша начинает развиваться заболевание, с легкостью можно распознать по внешнему виду ребенка. Он становится очень вялым, отсутствует аппетит, а процесс опорожнения происходит более 8 раз в день. Такая симптоматика очень напоминает инфицирование кишечника, но специалист-гастроэнтеролог способен распознать недуг по результатам анализа кала.

Недостаточное количество энзимов в организме оказывает негативное влияние на все существующие характеристики стула. В таком случае, симптоматика ярко выражена пенистым калом, который имеет достаточно неприятный кисловатый запах и выделяется в сильно жидкостном виде.

Такое изменение дефекации говорит о том, что в организме преобладает большое количество углеводов. Дефицит биокатализаторов способен проявляться различными проблемами, связанными с пищеварением. Постоянно жидкий стул, вялое состояние и необъяснимое вздутие живота являются основными симптомами наличия патологии.

Меры воздействия

Когда у ребенка обнаруживают такой недуг, специалисты часто назначают соблюдение специальной диеты. В это время из рациона питания малыша необходимо полностью исключить глютеносодержащие продукты. Врачи рекомендуют употребление картофельного пюре, рисовой крупы, а также свежих овощей и фруктов.
Если заболевание носит у ребенка наследственный характер, то в таком случае ему назначается пожизненная диета. Кроме того, нужно будет постоянно употреблять препараты, помогающие нормальной жизнедеятельности.

Где используются ферменты человеком

Биокатализаторы, как активные белковые молекулы, способствующие превращению одних веществ в другие, широко используются человеком, благодаря своим способностям сохранять свойства и функции вне организма.

  • Протеолитический фермент папайя, который выделяют из сока одноименного плода, используют для производства пива и размягчения мяса;
  • пепсином пользуются для производства каш быстрого приготовления;
  • трипсином — для производства продуктов питания детского;
  • реннин, полученный из желудка телят, используют при варке сыров.

Каталазу применяют для расщепления в резиновой и пищевой промышленности.

А пектидазу и целлюлозу, расщепляющие полисахаридные цепочки, используют для осветления фруктовых соков.

Их широко используют в фармакологии для производства лекарственных препаратов.

  • Чем полезна и как приготовить дома ферментированную пищу, вы узнаете из статьи:

Таким образом, ферменты или биокатализаторы, являются активными белками, без которых жизнь человека невозможна. Понимая их функции не стоит пренебрегать рекомендациями врачей. Роль ферментов направлена на улучшение работы клеточных структур, что ведет к слаженной деятельности всего организма.

Здоровья вам, уважаемые читатели!

В статьях блога используются картинки, из открытых источников Интернета. Если вы, вдруг, увидите свое авторское фото, сообщите об этом редактору блога через форму . Фотография будет удалена, либо будет поставлена ссылка на ваш ресурс. Спасибо за понимание!

0

История развития науки о ферментах

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т. е. в мягких условиях. Вещества, котopыe окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном (изолированном от воздуха) виде, так и на воздухе в присутствии кислорода. Например, мясные и рыбные консервы, пастеризованное молоко, сахар, крупы не разлагаются при довольно длительном хранении. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов.

Ферменты - это специфические белки, входящие в состав всех клеток и тканей живых организмов, играющие роль биологических катализаторов. О ферментах люди узнали давно. Еще в начале прошлого века в Петербурге К. С. Кирхгоф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. А практическое применение ферментативных процессов было известно с незапамятных времен. Это и сбраживание винограда, и закваска при приготовлении хлеба, и сыроварение, и многое другое.

Сейчас в разных учебниках, пособиях и в научной литературе применяются два понятия: «ферменты» и «энзимы». Эти названия идентичны. Они обозначают одно и то же - биологические катализаторы. Первое слово переводится как «закваска», второе - «в дрожжах».

Долгое время не представляли, что же происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. И только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка «начинена» ферментами, способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно «обитающие» вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т. е. они «организованы». А «неорганизованные» катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление «живых» ферментов и «неживых» энзимов объяснялось влиянием виталистов, борьбой материализма и идеализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратится и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М. М. Манассеина разрушила дрожжевые клетки, растирая их с речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Этот простой и убедительный опыт русского врача остался без должного внимания в царской России. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5·10 6 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

Работы А. Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представлениям в теории биологического катализа, а термины «фермент» и «энзим» стали применять как равнозначные.

В наши дни ферментология - это самостоятельная наука. Выделено и изучено около 2000 ферментов. Вклад в эту науку внесли советские ученые - наши современники А. Е. Браунштейн, В. Н. Орехович, В. А. Энгельгард, А. А. Покровский и др.

Химическая природа ферментов

В конце прошлого века было высказано предположение, что ферменты - это белки или какие-то вещества, очень похожие на белки. Потеря активности фермента при нагревании очень напоминает тепловую денатурацию белка. Диапазон температур при денатурации и при инактивации одинаков. Как известно, денатурация белка может быть вызвана не только нагреванием, но и действием кислот, солей тяжелых металлов, щелочей, длительным облучением ультрафиолетовыми лучами. Эти же химические и физические факторы приводят к потере активности фермента.

В растворах ферменты, как и белки, ведут себя под действием электрического тока сходным образом: молекулы движутся к катоду или аноду. Изменение концентрации водородных ионов в растворах белков или ферментов приводит к накоплению ими положительного или отрицательного заряда. Это доказывает амфотерный характер ферментов и тоже подтверждает их белковую природу. Еще одно свидетельство белковой природы ферментов - они не проходят через полупропицаемые мембраны. Это также доказывает их большую молекулярную массу. Но если ферменты - это белки, то при дегидратации их активность не должна уменьшаться. Опыты подтверждают правильность такого предположения.

Интересный опыт был проведен в лаборатории И. П. Павлова. Получая желудочный сок через фистулу у собак, сотрудники обнаружили, что, чем больше белка в соке, тем больше его активность, т. е. определяемый белок и есть фермент желудочного сока.

Таким образом, явления денатурации и подвижности в электрическом поле, амфотерность молекул, высокомолекулярная природа, способность осаждаться из раствора при действии водоотнимающих средств (ацетон или спирт) доказывают белковую природу ферментов.

К настоящему времени этот факт установлен многими, еще более тонкими физическими, химическими или биологическими методами.

Мы уже знаем, что белки бывают очень разные по составу и прежде всего они могут быть простыми или сложными. К каким же белкам относятся известные ныне ферменты?

Ученые различных стран установили, что многие ферменты - это простые белки. Это значит, что при гидролизе молекулы этих ферментов распадаются только до аминокислот. Ничего, кроме аминокислот, в гидролизате таких белков-ферментов обнаружить не удается. К простым ферментам относятся пепсин - фермент, переваривающий белки в желудке и содержащийся в желудочном соке, трипсин - фермент поджелудочного сока, папаин - растительный фермент, уреаза и др.

В сложные ферменты входят, кроме аминокислот, вещества, имеющие небелковую природу. Например, окислительно-восстановительные ферменты, встроенные в митохондрию, содержат, кроме белковой части, атомы железа, меди и другие термостабильные группы. Небелковой частью фермента могут быть и более сложные вещества: витамины, нуклеотиды (мономеры нуклеиновых кислот), нуклеотиды с тремя фосфорными остатками и т. д. Условились называть в таких сложных белках небелковую часть - кофермент, а белковую- апофермент.

Отличие ферментов от небиологических катализаторов

В школьных учебниках и пособиях по химии подробно разбирается действие катализаторов, дается представление об энергетическом барьере, энергии активации. Напомним только, что роль катализаторов заключается в их способности активировать молекулы веществ, вступающих в реакцию. Это приводит к снижению энергии активации. Реакция идет не в один, а в несколько этапов с образованием промежуточных соединений. Катализаторы не изменяют направление реакции, а только влияют на скорость достижения состояния химического равновесия. В катализируемой реакции всегда затрачивается меньше энергии по сравнению с некатализируемой. В ходе реакции фермент меняет свою упаковку, «напрягается» и по окончании реакции принимает исходную структуру, возвращается к первоначальной форме.

Ферменты те же катализаторы. Им свойственны все законы катализа. Но ферменты - белки, и это сообщает им особые свойства. Что же общего у ферментов с привычными для нас катализаторами, например платиной, оксидом ванадия (V) и другими неорганическими ускорителями реакций, а что их отличает?

Один и тот же неорганический катализатор может применяться в разных производствах. А фермент катализирует только одну реакцию или один вид реакции, т. е. он более специфичен, чем неорганический катализатор.

Температура всегда влияет на скорости химических реакций. Большинство реакций с неорганическими катализаторами идет при очень высоких температурах. При повышении температуры скорость реакции, как правило, увеличивается (рис. 1). Для ферментативных реакций это увеличение ограничено определенной температурой (температурный оптимум). Дальнейшее повышение температуры вызывает изменения в молекуле фермента, приводящие к уменьшению скорости реакции (рис. 1). Но некоторые ферменты, например ферменты микроорганизмов, обнаруженных в воде горячих природных источников, не только выдерживают температуры, близкие к точке кипения воды, но и даже, проявляют свою максимальную активность. Для большинства же ферментов температурный оптимум близок к 35-45 °С. При более высоких температурах их активность уменьшается, а затем происходит полная тепловая денатурация.

Рис. 1. Влияние температуры на активность ферментов: 1 - увеличение скорости реакции, 2 - уменьшение скорости реакции.

Многие неорганические катализаторы проявляют свою максимальную эффективность в сильнокислой или сильно-щелочной среде. В отличие от них ферменты активны только при физиологических значениях кислотности раствора, только при такой концентрации ионов водорода, которая совместима с жизнью и нормальным функционированием клетки, органа или системы.

Реакции с участием неорганических катализаторов протекают, как правило, при высоких давлениях, а ферменты работают при нормальном (атмосферном) давлении.

И самым удивительным отличием фермента от других катализаторов является то, что скорость реакций, катализируемых ферментами, в десятки тысяч, а иногда и в миллионы раз выше той, которая может быть достигнута при участии неорганических катализаторов.

Известный всем пероксид водорода, применяемый в быту как отбеливающее и дезинфицирующее вещество, без катализаторов разлагается медленно:

В присутствии неорганического катализатора (солей железа) эта реакция идет несколько быстрее. А каталаза (фермент, присутствующий практически во всех клетках) разрушает пероксид водорода с невообразимой скоростью: одна молекула каталазы расщепляет в одну минуту более 5 млн. молекул Н 2 О 2 .

Универсальное распространение каталазы в клетках всех органов аэробных организмов и высокая активность этого фермента объясняются тем, что пероксид водорода - это мощный клеточный яд. Он получается в клетках как побочный продукт многих реакций, но на страже стоит фермент каталаза, который сейчас же разрушает пероксид водорода на безвредные кислород и воду.

Активный центр фермента

Обязательным этапом в катализируемой реакции является взаимодействие фермента с тем веществом, превращение которого он катализирует,- с субстратом: образуется фермент-субстратный комплекс. В приведенном выше примере пероксид водорода - это субстрат для действия каталазы.

Интересным оказывается то, что в ферментативных реакциях молекула субстрата во много раз меньше, чем молекула белка-фермента. Следовательно, субстрат не может контактировать со всей огромной молекулой фермента, а только с каким-то ее небольшим участком или даже отдельной группой, атомом. Для подтверждения этого предположения ученые отщепляли от фермента одну или несколько аминокислот, и это не влияло или почти не влияло на скорость катализируемой реакции. Но отщепление отдельных определенных аминокислот или группы приводило к полной потере каталитических свойств фермента. Так сформировалось представление об активном центре фермента.

Активный центр - это такой участок белковой молекулы, который обеспечивает соединение фермента с субстратом и дает возможность для дальнейших превращений субстрата. Были изучены некоторые активные центры разных ферментов. Это или функциональная группа (например, ОН-группа серина), или отдельная аминокислота. Иногда для обеспечения каталитического действия нужно несколько аминокислот в определенном порядке.

В составе активного центра выделяют различные по своим функциям участки. Одни участки активного центра обеспечивают сцепление с субстратом, прочный контакт с ним. Поэтому их называют якорными или контактными участками. Другие выполняют собственно каталитическую функцию, активируют субстрат - каталитические участки. Такое условное разделение активного центра помогает более точно представить механизм каталитической реакции.

Тип химической связи в фермент-субстратных комплексах тоже изучался. Вещество (субстрат) удерживается на ферменте при участии самых различных типов связей: водородных мостиков, ионных, ковалентных, донорно-акцепторных связей, ван-дер-ваальсовых сил сцепления.

Деформация молекул фермента в растворе приводит к появлению его изомеров, отличающихся третичной структурой. Иными словами, фермент ориентирует свои функциональные группы, входящие в активный центр, так, чтобы проявилась наибольшая каталитическая активность. Но и молекулы субстрата также могут деформироваться, «напрягаться» при взаимодействии с ферментом. Эти современные представления о фермент-субстратном взаимодействии отличаются от господствовавшей ранее теории Э. Фишера, который считал, что молекула субстрата точно соответствует активному центру фермента и подходит к нему как ключ к замку.

Свойства ферментов

Важнейшим свойством ферментов является преимущественное ускорение одной из нескольких теоретически возможных реакций. Это позволяет субстратам выбрать наиболее выгодные для организма цепочки превращений из целого ряда возможных путей.

В зависимости от условий ферменты способны катализировать как прямую, так и обратную реакции. Например, пировиноградная кислота под влиянием фермента лактатдегидрогеназы превращается в конечный продукт брожения - молочную кислоту. Этот же фермент катализирует и обратную реакцию, и само название он получил не по прямой, а по обратной реакции. Обе реакции происходят в организме при разных условиях:

Это свойство ферментов имеет большое практическое значение.

Другое важное свойство ферментов - термолабильность, т. е. высокая чувствительность к изменениям температуры. Мы уже говорили, что ферменты являются белками. Для большинства из них температура свыше 70 °С приводит к денатурации и потере активности. Из курса химии известно, что повышение температуры на 10 °С приводит к увеличению скорости реакции в 2-3 раза, что характерно и для ферментативных реакций, но до определенного предела. При температурах, близких к 0 °С, скорость ферментативных реакций замедляется до минимума. Это свойство широко используется в различных отраслях народного хозяйства, особенно в сельском хозяйстве и медицине. Например, все существующие сейчас способы консервации почки перед ее пересадкой больному включают охлаждение этого органа, чтобы снизить интенсивность биохимических реакций и продлить время жизни почки до ее пересадки человеку. Такой прием сохранил здоровье и спас жизнь десяткам тысяч людей в мире.

Рис. 2. Влияние pH на активность ферментов.

Одним из важнейших свойств белков-ферментов является их чувствительность к реакции среды, концентрации водородных ионов или гидроксид-ионов. Ферменты активны только в узком интервале кислотности или щелочности среды (pH). Например, активность пепсина в полости желудка максимальна при pH около 1 -1,5. Снижение кислотности приводит к глубокому нарушению пищеварительного акта, недоперевариванию пищи и тяжелым осложнениям. Из курса биологии вам известно, что пищеварение начинается уже в ротовой полости, где присутствует амилаза слюны. Оптимальное значение pH для нее 6,8-7,4. Для разных ферментов пищеварительного тракта характерны большие различия в оптимуме pH (рис. 2). Изменение реакции среды приводит к изменению зарядов на молекуле фермента или даже в его активном центре, вызывая снижение или полную потерю активности.

Следующим важным свойством является специфичность действия фермента. Каталаза расщепляет только пероксид водорода, уреаза - только мочевину H 2 N-СО-NH 2 , т. е. фермент катализирует превращение только одного субстрата, только его молекулу он «узнает». Такая специфичность считается абсолютной. Если фермент катализирует превращение нескольких субстратов, имеющих одинаковую функциональную группу, то такая специфичность называется групповой. Например, фосфатаза катализирует отщепление остатка фосфорной кислоты:

Разновидностью специфичности является чувствительность фермента только к одному изомеру - стерео-химическая специфичность.

Ферменты влияют на скорость превращения различных веществ. Но и на ферменты влияют некоторые вещества, резко изменяя их активность. Вещества, которые повышают активность ферментов, активизируют их, называются активаторами, а угнетающие их - ингибиторами. Ингибиторы могут подействовать на фермент необратимо. После их действия фермент уже никогда не может катализировать свою реакцию, так как его структура будет сильно изменена. Так действуют на фермент соли тяжелых металлов, кислоты, щелочи. Обратимый ингибитор может быть удален из раствора, и фермент вновь приобретает активность. Такое обратимое ингибирование часто протекает по конкурентному типу, т. е. за активный центр борются субстрат и похожий на него ингибитор. Снять такое ингибирование можно, если увеличить концентрацию субстрата и вытеснить ингибитор с активного центра субстратом.

Важным свойством многих ферментов является то, что они находятся в тканях и клетках в неактивной форме (рис. 3). Неактивная форма ферментов называется проферментом. Классическими его примерами являются неактивные формы пепсина или трипсина. Существование неактивных форм ферментов имеет большое биологическое значение. Если бы пепсин или трипсин вырабатывались сразу в активной форме, то это приводило бы к тому, что, например, пепсин «переваривал» стенку желудка, т. е. желудок «переваривал» сам себя. Такого не происходит потому, что пепсин или трипсин становятся активными только после попадания в полость желудка или в тонкий кишечник: от пепсина под действием соляной кислоты, содержащейся в желудочном соке, отщепляется несколько аминокислот, и он приобретает способность расщеплять белки. А сам желудок предохранен теперь от действия пищеварительных ферментов слизистой оболочкой, выстилающей его полость.

Рис. 3 Схема превращения трипсиногена в активный трипсин: А - трипсиноген; Б - трипсин; 1 - место отрыва пептида; 2 - водородные связи; 3 - дисульфидный мостик; 4 - пептид, отщепленный при активации.

Процесс активации фермента идет, как правило, одним из четырех путей, представленных на рисунке 4. В первом случае отщепление пептида от неактивного фермента «открывает» активный центр и делает фермент активным.

Рис. 4 Пути активации ферментов (штриховкой отмечена молекула субстрата):

1 - отщепление от профермента небольшого участка (пептида) и превращение неактивного профермента в активный фермент; 2 - образование дисульфидных связей из SH-групп, освобождающее активный центр; 3 - образование комплекса белка с металлами, активирующее фермент: 4 образование комплекса фермента с каким-нибудь веществом (при этом освобождается доступ к активному центру).

Второй путь представляет собой образование дисульфидных S-S-мостиков, делающих доступным активный центр. В третьем случае присутствие металла активирует фермент, который может работать только в комплексе с этим металлом. Четвертый путь иллюстрирует активацию каким-то веществом, которое связывается с периферическим участком белковой молекулы и деформирует фермент таким образом, чтобы облегчить доступ субстрата к активному центру.

В последние годы обнаружен еще один способ регуляции активности ферментов Выяснилось, что один фермент, например лактатде-гидрогеназа, может находиться в нескольких молекулярных формах, отличающихся между собой, хотя они все катализируют одну реакцию. Такие различные по составу молекулы фермента, которые катализируют одну и ту же реакцию, встречаются даже внутри одной и той же клетки. Их называют изоферментами, т. е. изомерами фермента. У названной уже лактатдегидрогеназы найдено пять различных изоферментов. Какова роль нескольких форм одного фермента? Видимо, организм «подстраховывает» некоторые особенно важные реакции, когда при изменении условий в клетке работает то одна, то другая форма изофермента, и обеспечивает необходимую скорость и направление течения процесса.

И еще одно важное свойство ферментов. Часто они функционируют в клетке не отдельно друг от друга, а организованы в виде комплексов - ферментных систем (рис. 5): продукт предыдущей реакции - субстрат для последующей. Эти системы встроены в клеточные мембраны и обеспечивают быстрое направленное окисление вещества, «перебрасывая» его от фермента к ферменту. Синтетические процессы в клетке идут в подобных же ферментных системах.

Классификация ферментов

Круг вопросов, изучаемых ферментологией, широк. Количество ферментов, применяемых в здравоохранении, сельском хозяйстве, микробиологии и других отраслях науки и практики, велико. Это создавало трудность при характеристике ферментативных реакций, так как один и тот же фермент можно назвать или по субстрату, или по типу катализируемых реакций, или старым термином,прочно вошедшим в литературу: например пепсин, трипсин, каталаза.

Рис. 5. Предполагаемая структура мультиферментного комплекса, синтезирующего жирные кислоты (семь ферментных субъединиц отвечают за семь химических реакций).

Поэтому в 1961 г. Международный биохимический съезд в Москве утвердил классификацию ферментов, в основу которой положен тип реакции, катализируемой данным ферментом. В названии фермента обязательно присутствует название субстрата, т. е. того соединения, на которое воздействует данный фермент, и окончание -аза. Например, аргиназа катализирует гидролиз аргинина.

По этому принципу все ферменты были разделены на шесть классов.

1. Оксидоредуктазы-ферменты, катализирующие окислительно-восстановительные реакции, например каталаза:

2. Трансферазы - ферменты, катализирующие перенос атомов или радикалов, например метилтрансферазы, переносящие СНз-группу:

3. Гидролазы - ферменты, разрывающие внутримолекулярные связи путем присоединения молекул воды, например фосфатаза:

4. Лиазы - ферменты, отщепляющие от субстрата ту или иную группу без присоединения воды, негидролитическим путем, например отщепление карбоксильной группы декарбоксилазой:

5. Изомеразы - ферменты, катализирующие превращение одного изомера в другой:

Глюкозо-6-фосфат-›глюкозо-1-фосфат

6. Ферменты, катализирующие реакции синтеза, например синтез пептидов из аминокислот. Этот класс ферментов носит название синтетаз.

Каждый фермент предложили закодировать шифром из четырех цифр, где первая из них обозначает номер класса, а остальные три характеризуют более подробно свойства фермента, его подкласс и индивидуальный номер в каталоге.

В качестве примера классификации ферментов приведем четырехзначный код, присвоенный пепсину,- 3.4.4Л. Цифра 3 обозначает класс фермента - гидролазы. Следующая цифра 4 кодирует подкласс пептидгидролаз, т. е. тех ферментов, которые гидролизуют именно пептидные связи. Еще одна цифра 4 обозначает под-подкласс, называемый пептидилпептидгидролазами. В этот подподкласс входят уже индивидуальные ферменты, и первым в нем значится пепсин, которому и присвоен порядковый номер 1.

Так получается его код - 3.4.4.1. Точки приложения действия ферментов класса гидролаз показаны на рисунке 6.

Рис. 6. Расщепление пептидных связей различными протеолитнческими ферментами.

Действие ферментов

Обычно ферменты выделяют из различных объектов животного, растительного или микробного происхождения и изучают их действие вне клетки и организма. Эти исследования очень важны для понимания механизма действия ферментов, изучения их состава, особенностей катализируемых ими реакций. Но полученные таким образом сведения нельзя механически непосредственно переносить на деятельность ферментов в живой клетке. Вне клетки трудно воспроизвести те условия, в которых работает фермент, например в митохондрии или лизосоме. К тому же не всегда известно, сколько из имеющихся молекул фермента участвует в реакции - все или только какая-то их часть.

Почти всегда оказывается, что клетка содержит тот или иной фермент, по содержанию превышающий в несколько десятков раз необходимое количество для осуществления нормального обмена веществ. Обмен веществ различен по интенсивности в разные периоды жизни клетки, однако ферментов в ней значительно больше, чем того требовал бы самый максимальный уровень обмена веществ. Например, в состав клеток сердечной мышцы входит столько цитохрома с, которое могло бы осуществить окисление, в 20 раз большее, чем максимальное потребление кислорода сердечной мышцей. Позднее были обнаружены вещества, которые могут «выключать» часть молекул ферментов. Это так называемые тормозящие факторы. Для понимания механизма действия ферментов важно и то, что в клетке они находятся не просто в растворе, а встроены в структуру клетки. Сейчас уже известно, какие ферменты вмонтированы в наружную мембрану митохондрии, какие встроены во внутреннюю, какие связаны с ядром, лизосомами и другими субклеточными структурами.

Близкое «территориальное» расположение фермента, катализирующего первую реакцию, к ферментам, катализирующим вторую, третью и последующие реакции, сильно влияет на суммарный результат их действия. Например, в митохондрии вмонтирована цепь ферментов, передающих электроны на кислород,- цитохромная система. Она катализирует окисление субстратов с образованием энергии, которая аккумулируется в АТФ.

При извлечении ферментов из клетки слаженность их совместной работы нарушается. Поэтому изучать работу ферментов стараются без разрушения тех структур, в которые встроены их молекулы. Например, если срез ткани подержать в растворе субстрата, а затем обработать реактивом, который с продуктами реакции даст окрашенный комплекс, то в микроскопе будут четко видны окрашенные участки клетки: в этих участках был локализован (расположен) фермент, который расщеплял субстрат. Так было установлено, в каких именно клетках желудка содержится пепсиноген, из которого получается фермент пепсин.

Сейчас широко распространен другой метод, который позволяет установить локализацию ферментов,- разделительное центрифугирование. Для этого исследуемую ткань (например, кусочки печени лабораторных животных) измельчают, а затем готовят из нее кашицу в растворе сахарозы. Смесь переносят в пробирки и вращают их с большими скоростями в центрифугах. Различные клеточные элементы в зависимости от их массы и размеров распределяются в плотном растворе сахарозы при вращении примерно следующим образом:

Для получения тяжелых ядер требуется относительно небольшое ускорение (меньшее число оборотов). После отделения ядер, увеличив число оборотов, последовательно осаждают митохондрии, микросомы, получают цитоплазму. Теперь активность ферментов можно изучать в каждой из выделенных фракций. Оказывается, что большинство из известных ферментов локализованы преимущественно в той или иной фракции. Например, фермент альдолаза локализован в цитоплазме, а фермент, окисляющий капроновую кислоту,- преимущественно в митохондриях.

При повреждении мембраны, в которую встроены ферменты, комплексные взаимосвязанные процессы не протекают, т. е. каждый фермент может действовать только сам по себе.

Клетки растений и микроорганизмов, как и клетки животных, содержат очень похожие клеточные фракции. Например, пластиды растений по ферментному набору напоминают митохондрии. В микроорганизмах обнаружены зерна, напоминающие рибосомы и тоже содержащие большие количества рибонуклеиновой кислоты. Ферменты, входящие в состав животных, растительных и микробных клеток, обладают сходным действием. Например, гиалуронидаза облегчает микробам проникновение в организм, способствуя разрушению клеточной стенки. Этот же фермент обнаружен в различных тканях животных организмов.

Получение и применение ферментов

Ферменты находятся во всех тканях животных и растений. Однако количество одного и того же фермента в разных тканях и прочность связи фермента с тканью неодинаковы. Поэтому практически его получение не всегда оправдано.

Источником получения ферментов могут быть пищеварительные соки человека и животных. В соках относительно мало посторонних примесей, клеточных элементов и других компонентов, от которых надо избавляться при получении чистого препарата. Это почти чистые растворы ферментов.

Из тканей получить фермент труднее. Для этого ткань измельчают, клеточные структуры разрушают, растирая измельченную ткань с песком, или обрабатывают ультразвуком. При этом ферменты «вываливаются» из клеток и мембранных структур. Их теперь очищают и отделяют друг от друга. Для очистки используют различную способность ферментов разделяться на хроматографических колонках, неодинаковую их подвижность в электрическом поле, осаждение их спиртом, солями, ацетоном и другие методы. Так как большинство ферментов связано с ядром, митохондриями, рибосомами или другими субклеточными структурами, сначала выделяют центрифугированием эту фракцию, а затем из нее извлекают фермент

Разработка новых методов очистки позволила получить ряд кристаллических ферментов в очень чистом виде, которые могут храниться годами.

Сейчас уже невозможно установить, когда люди впервые применили фермент, но можно с большой уверенностью утверждать, что это был фермент растительного происхождения. Люди давно обратили внимание на полезность того или иного растения не только как пищевого продукта. Например, аборигены Антильских островов издавна использовали сок дынного дерева для лечения язв и других кожных заболеваний.

Рассмотрим более подробно особенности получения и отрасли применения ферментов на примере одного из хорошо известных ныне растительных биокатализаторов - папаина. Этот фермент содержится в млечном соке во всех частях тропического плодового дерева папайи - гигантской древовидной травы, достигающей 10 м. Ее плоды похожи по форме и вкусу на дыню и содержат большое количество фермента папаина. Еще в начале XVI в. испанские мореплаватели обнаружили это растение в естественных условиях в Центральной Америке. Затем его завезли в Индию, а оттуда во все тропические страны. Васко да Гама, увидевший папайю в Индии, назвал ее золотым деревом жизни, а Марко Поло сказал, что папайя - это «дыня, вскарабкавшаяся на дерево». Мореплаватели знали, что плоды дерева спасают от цинги и дизентерии.

В нашей стране папайя растет на Черноморском побережье Кавказа, в ботаническом саду Академии наук России в специальных теплицах. Сырье для фермента - млечный сок - получают из надрезов на кожице плода. Затем сок сушат в лаборатории в вакуумных сушильных шкафах при невысоких температурах (не более 80 °С). Высушенный продукт растирают и хранят в стерильной упаковке, залитой парафином. Это уже достаточно активный препарат. Ферментативную активность его можно оценить по количеству расщепленного за единицу времени белка казеина. За одну биологическую единицу активности папаина принимают такое количество фермента, которого при введении в кровь достаточно для появления симптома «свисания ушей» у кролика массой 1 кг. Этот феномен происходит потому, что папаин начинает действовать на коллагеновые белковые нити в ушах кролика.

Папаин обладает целым спектром свойсте: протеолитическим, противовоспалительным, антикоагуляционным (препятствующим свертыванию крови), дегидратационным, болеутоляющим и бактерицидным. Он разрушает белки до полипептидов и аминокислот. Причем это расщепление идет глубже, чем при действии других ферментов животного и бактериального происхождения. Особенностью папаина является его способность быть активным в широком интервале pH и при больших колебаниях температуры, что особенно важно и удобно для широкого применения этого фермента. А если к тому же учесть, что для получения ферментов, сходных по действию с папаином (пепсин, трипсин, лидаза), требуются кровь, печень, мышцы или другие ткани животных, то преимущество и экономическая эффективность растительного фермента папаина несомненны.

Области применения папаина очень разнообразны. В медицине он используется для обработки ран, где способствует расщеплению белков поврежденных тканей и очищает раневую поверхность. Незаменим папаин при лечении различных заболеваний глаз. Он вызывает рассасывание помутневших структур органа зрения, делая их прозрачными. Известно положительное действие фермента при заболеваниях органов пищеварения. Хорошие результаты получены при применении папаина для лечения кожных болезней, ожогов, а также в невропатологии, урологии и других отраслях медицины.

Кроме медицины, большое количество этого фермента расходуется в виноделии и пивоварении. Папаин увеличивает сроки хранения напитков. При обработке папаином мясо становится мягким и быстроусваиваемым, сроки хранения продуктов резко увеличиваются. Шерсть, идущая в текстильную промышленность, после обработки папаином не скручивается и не сопровождается усадкой. Недавно папаин начали применять в кожевенном производстве. Кожаные изделия после обработки ферментом становятся мягкими, эластичными, более прочными и долговечными.

Тщательное изучение некоторых неизлечимых ранее болезней привело к необходимости вводить в организм недостающие ферменты для замены тех, активность которых снижена. Можно было бы ввести в организм необходимое количество недостающих ферментов или «добавить» молекулы тех ферментов, которые в органе или ткани снизили свою каталитическую активность. Но на эти ферменты организм реагирует как на чужеродные белки, отторгает их, вырабатывает на них антитела, что в конце концов приводит к быстрому распаду введенных белков. Ожидаемого терапевтического эффекта не будет. Вводить ферменты с пищей тоже нельзя, так как пищеварительные соки их «переварят» и они потеряют свою активность, распадутся до аминокислот, не дойдя до клеток и тканей. Введение ферментов прямо в кровоток приводит их к разрушению тканевыми протеазами. Устранить эти трудности удается, применяя иммобилизованные ферменты. В основе принципа иммобилизации лежит способность ферментов «привязываться» к стабильному носителю органической или неорганической природы. Примером химического связывания фермента с матрицей (носителем) является образование прочных ковалентных связей между их функциональными группами. Матрицей может быть, например, пористое стекло, содержащее функциональные аминогруппы, к которым химически «привязывают» фермент.

При применении ферментов часто возникает необходимость сравнивать их активности. Как узнать более активный фермент? Как рассчитать активность разных очищенных препаратов? Условились за активность фермента принимать количество субстрата, которое за одну минуту может превратить 1 г ткани, содержащий этот фермент, при 25 °С. Чем больше субстрата переработал фермент, тем он активнее. Активность одного и того же фермента меняется в связи с возрастом, полом, временем суток, состоянием организма, а также зависит от желез внутренней секреции, вырабатывающих гормоны.

Природа почти не ошибается, производя одинаковые белки в течение всей жизни организма и передавая эту строгую информацию о производстве тех же белков из поколения в поколение. Однако иногда в организме появляется измененный белок, в составе которого встречается одна или несколько «лишних» аминокислот или, наоборот, они утрачены. В настоящее время известно много таких молекулярных ошибок. Они объясняются разными причинами и могут вызвать болезненные изменения в организме. Такие болезни, в появлении которых повинны ненормальные молекулы белка, получили в медицине название молекулярных. Например, гемоглобин здорового человека, состоящий из двух полипептидных цепей (а и в), и гемоглобин больного серповидно-клеточной анемией (эритроцит имеет форму серпа) отличаются только тем, что у больных в в-цепи глутаминовая кислота заменена валином. Серповидно-клеточная анемия - это наследственная болезнь. Изменения гемоглобина передаются от родителей потомству.

Болезни, возникающие при изменении активности ферментов, называются ферментопатиями. Они, как правило, наследуются, передаются от родителей детям. Например, при врожденной фенилкетонурии нарушается следующее превращение:

При недостатке фермента фенилаланингидроксилазы фенилаланин не превращается в тирозин, а накапливается, что вызывает расстройство нормальной функции ряда органов, в первую очередь расстройство функции центральной нервной системы. Болезнь развивается с первых дней жизни ребенка, и к шести-семи месяцам жизни появляются ее первые симптомы. В крови и моче таких больных можно обнаружить огромные по сравнению с нормой количества фенилаланина. Своевременное выявление такой патологии и уменьшение приема той пищи, которая содержит много фенилаланина, оказывает положительное лечебное действие.

Другой пример: отсутствие у детей фермента, превращающего галактозу в глюкозу, приводит к накоплению в организме галактозы, которая в больших количествах накапливается в тканях и поражает печень, почки, глаза. Если отсутствие фермента обнаружено своевременно, то ребенка переводят на диету, не содержащую галактозу. Это ведет к исчезновению признаков заболевания.

Благодаря существованию ферментных препаратов расшифровывают структуру белков и нуклеиновых кислот. Без них невозможны производство антибиотиков, виноделие, хлебопечение, синтез витаминов. В сельском хозяйстве применяются стимуляторы роста, которые оказывают действие на активирование ферментативных процессов. Таким же свойством обладают многие лекарственные препараты, которые подавляют или активируют в организме деятельность ферментов.

Без ферментов невозможно представить себе развитие таких перспективных направлений, как воспроизводство химических процессов, происходящих в клетке, и создания на этой основе современной промышленной биотехнологии. Пока еще ни один современный химический завод не способен соперничать с обычным листком растения, в клетках которого с участием ферментов и солнечных лучей из воды и углекислого газа синтезируется огромное число разнообразных сложных органических веществ. При этом в атмосферу выделяется в большом количестве столь необходимый нам для жизни кислород.

Ферментология - молодая и перспективная наука, отделившаяся от биологии и химии и обещающая много удивительных открытий всем, кто решит заняться ею всерьез.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

ФЕРМЕНТЫ
органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты (от лат. fermentum - брожение, закваска) иногда называют энзимами (от греч. en - внутри, zyme - закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии - энзимология. Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы. Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л. Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э. Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж. Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии. Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов - животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать "универсальные" ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.
Ферменты как белки. Все ферменты являются белками, простыми или сложными (т.е. содержащими наряду с белковым компонентом небелковую часть).
См. также БЕЛКИ . Ферменты - крупные молекулы, их молекулярные массы лежат в диапазоне от 10 000 до более 1 000 000 дальтон (Да). Для сравнения укажем мол. массы известных веществ: глюкоза - 180, диоксид углерода - 44, аминокислоты - от 75 до 204 Да. Ферменты, катализирующие одинаковые химические реакции, но выделенные из клеток разных типов, различаются по свойствам и составу, однако обычно обладают определенным сходством структуры. Структурные особенности ферментов, необходимые для их функционирования, легко утрачиваются. Так, при нагревании происходит перестройка белковой цепи, сопровождающаяся потерей каталитической активности. Важны также щелочные или кислотные свойства раствора. Большинство ферментов лучше всего "работают" в растворах, pH которых близок к 7, когда концентрация ионов H+ и OH- примерно одинакова. Связано это с тем, что структура белковых молекул, а следовательно, и активность ферментов сильно зависят от концентрации ионов водорода в среде. Не все белки, присутствующие в живых организмах, являются ферментами. Так, иную функцию выполняют структурные белки, многие специфические белки крови, белковые гормоны и т.д.
Коферменты и субстраты. Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами (или кофакторами). Роль коферментов играют большинство витаминов и многие минеральные вещества; именно поэтому они должны поступать в организм с пищей. Витамины РР (никотиновая кислота, или ниацин) и рибофлавин, например, входят в состав коферментов, необходимых для функционирования дегидрогеназ. Цинк - кофермент карбоангидразы, фермента, катализирующего высвобождение из крови диоксида углерода, который удаляется из организма вместе с выдыхаемым воздухом. Железо и медь служат компонентами дыхательного фермента цитохромоксидазы. Вещество, подвергающееся превращению в присутствии фермента, называют субстратом. Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента. Этот процесс представляют следующим образом:

Продукт тоже можно считать субстратом, поскольку все ферментативные реакции в той или иной степени обратимы. Правда, обычно равновесие сдвинуто в сторону образования продукта, и обратную реакцию бывает трудно зафиксировать.
Механизм действия ферментов. Скорость ферментативной реакции зависит от концентрации субстрата [[S]] и количества присутствующего фермента. Эти величины определяют, сколько молекул фермента соединится с субстратом, и именно от содержания фермент-субстратного комплекса зависит скорость реакции, катализируемой данным ферментом. В большинстве ситуаций, представляющих интерес для биохимиков, концентрация фермента очень мала, а субстрат присутствует в избытке. Кроме того, биохимики исследуют процессы, достигшие стационарного состояния, при котором образование фермент-субстратного комплекса уравновешивается его превращением в продукт. В этих условиях зависимость скорости (v) ферментативного превращения субстрата от его концентрации [[S]] описывается уравнением Михаэлиса - Ментен:


где KM - константа Михаэлиса, характеризующая активность фермента, V - максимальная скорость реакции при данной суммарной концентрации фермента. Из этого уравнения следует, что при малых [[S]] скорость реакции возрастает пропорционально концентрации субстрата. Однако при достаточно большом увеличении последней эта пропорциональность исчезает: скорость реакции перестает зависеть от [[S]] - наступает насыщение, когда все молекулы фермента оказываются занятыми субстратом. Выяснение механизмов действия ферментов во всех деталях - дело будущего, однако некоторые важные их особенности уже установлены. Каждый фермент имеет один или несколько активных центров, с которыми и связывается субстрат. Эти центры высокоспецифичны, т.е. "узнают" только "свой" субстрат или близкородственные соединения. Активный центр формируют особые химические группы в молекуле фермента, ориентированные друг относительно друга определенным образом. Происходящая так легко потеря ферментативной активности связана именно с изменением взаимной ориентации этих групп. Молекула субстрата, связанного с ферментом, претерпевает изменения, в результате которых разрываются одни и образуются другие химические связи. Чтобы этот процесс произошел, необходима энергия; роль фермента состоит в снижении энергетического барьера, который нужно преодолеть субстрату для превращения в продукт. Как именно обеспечивается такое снижение - до конца не установлено.
Ферментативные реакции и энергия. Высвобождение энергии при метаболизме питательных веществ, например при окислении шестиуглеродного сахара глюкозы с образованием диоксида углерода и воды, происходит в результате последовательных согласованных ферментативных реакций. В животных клетках в превращениях глюкозы в пировиноградную кислоту (пируват) или молочную кислоту (лактат) участвуют 10 разных ферментов. Этот процесс называется гликолизом. Первая реакция - фосфорилирование глюкозы - требует участия АТФ. На превращение каждой молекулы глюкозы в две молекулы пировиноградной кислоты расходуются две молекулы АТФ, но при этом на промежуточных этапах из аденозиндифосфата (АДФ) образуются 4 молекулы АТФ, так что весь процесс в целом дает 2 молекулы АТФ. Далее пировиноградная кислота окисляется до диоксида углерода и воды при участии ферментов, ассоциированных с митохондриями. Эти превращения образуют цикл, называемый циклом трикарбоновых кислот, или циклом лимонной кислоты.
См. также МЕТАБОЛИЗМ . Окисление одного вещества всегда сопряжено с восстановлением другого: первое отдает атом водорода, а второе его присоединяет. Катализируют эти процессы дегидрогеназы, обеспечивающие перенос атомов водорода от субстратов к коферментам. В цикле трикарбоновых кислот одни специфические дегидрогеназы окисляют субстраты с образованием восстановленной формы кофермента (никотинамиддинуклеотида, обозначаемого НАД), а другие окисляют восстановленный кофермент (НАДЧН), восстанавливая другие дыхательные ферменты, в том числе цитохромы (железосодержащие гемопротеины), в которых атом железа попеременно то окисляется, то восстанавливается. В конечном итоге восстановленная форма цитохромоксидазы, одного из ключевых железосодержащих ферментов, окисляется кислородом, попадающим в наш организм с вдыхаемым воздухом. Когда происходит горение сахара (окисление кислородом воздуха), входящие в его состав атомы углерода непосредственно взаимодействуют с кислородом, образуя диоксид углерода. В отличие от горения, при окислении сахара в организме кислород окисляет собственно железо цитохромоксидазы, но в конечном итоге его окислительный потенциал используется для полного окисления сахаров в ходе многоступенчатого процесса, опосредуемого ферментами. На отдельных этапах окисления энергия, заключенная в питательных веществах, высвобождается в основном маленькими порциями и может запасаться в фосфатных связях АТФ. В этом принимают участие замечательные ферменты, которые сопрягают окислительные реакции (дающие энергию) с реакциями образования АТФ (запасающими энергию). Этот процесс сопряжения известен как окислительное фосфорилирование. Не будь сопряженных ферментативных реакций, жизнь в известных нам формах была бы невозможна. Ферменты выполняют и множество других функций. Они катализируют разнообразные реакции синтеза, включая образование тканевых белков, жиров и углеводов. Для синтеза всего огромного множества химических соединений, обнаруженных в сложных организмах, используются целые ферментные системы. Для этого нужна энергия, и во всех случаях ее источником служат фосфорилированные соединения, такие, как АТФ.





Ферменты и пищеварение. Ферменты - необходимые участники процесса пищеварения. Только низкомолекулярные соединения могут проходить через стенку кишечника и попадать в кровоток, поэтому компоненты пищи должны быть предварительно расщеплены до небольших молекул. Это происходит в ходе ферментативного гидролиза (расщепления) белков до аминокислот, крахмала до сахаров, жиров до жирных кислот и глицерина. Гидролиз белков катализирует фермент пепсин, содержащийся в желудке. Ряд высокоэффективных пищеварительных ферментов секретирует в кишечник поджелудочная железа. Это трипсин и химотрипсин, гидролизующие белки; липаза, расщепляющая жиры; амилаза, катализирующая расщепление крахмала. Пепсин, трипсин и химотрипсин секретируются в неактивной форме, в виде т.н. зимогенов (проферментов), и переходят в активное состояние только в желудке и кишечнике. Это объясняет, почему указанные ферменты не разрушают клетки поджелудочной железы и желудка. Стенки желудка и кишечника защищает от пищеварительных ферментов и слой слизи. Некоторые важные пищеварительные ферменты секретируются клетками тонкого кишечника. Большая часть энергии, запасенной в растительной пище, такой, как трава или сено, сосредоточена в целлюлозе, которую расщепляет фермент целлюлаза. В организме травоядных животных этот фермент не синтезируется, и жвачные, например крупный рогатый скот и овцы, могут питаться содержащей целлюлозу пищей только потому, что целлюлазу вырабатывают микроорганизмы, заселяющие первый отдел желудка - рубец. С помощью микроорганизмов происходит переваривание пищи и у термитов. Ферменты находят применение в пищевой, фармацевтической, химической и текстильной промышленности. В качестве примера можно привести растительный фермент, получаемый из папайи и используемый для размягчения мяса. Ферменты добавляют также в стиральные порошки.
Ферменты в медицине и сельском хозяйстве. Осознание ключевой роли ферментов во всех клеточных процессах привело к широкому их применению в медицине и сельском хозяйстве. Нормальное функционирование любого растительного и животного организма зависит от эффективной работы ферментов. В основе действия многих токсичных веществ (ядов) лежит их способность ингибировать ферменты; таким же эффектом обладает и ряд лекарственных препаратов. Нередко действие лекарственного препарата или токсичного вещества можно проследить по его избирательному влиянию на работу определенного фермента в организме в целом или в той или иной ткани. Например, мощные фосфорорганические инсектициды и нервно-паралитические газы, разработанные в военных целях, оказывают свой губительный эффект, блокируя работу ферментов - в первую очередь холинэстеразы, играющей важную роль в передаче нервного импульса. Чтобы лучше понять механизм действия лекарственных препаратов на ферментные системы, полезно рассмотреть, как работают некоторые ингибиторы ферментов. Многие ингибиторы связываются с активным центром фермента - тем самым, с которым взаимодействует субстрат. У таких ингибиторов наиболее важные структурные особенности близки к структурным особенностям субстрата, и если в реакционной среде присутствуют и субстрат и ингибитор, между ними наблюдается конкуренция за связывание с ферментом; при этом чем больше концентрация субстрата, тем успешнее он конкурирует с ингибитором. Ингибиторы другого типа индуцируют в молекуле фермента конформационные изменения, в которые вовлекаются важные в функциональном отношении химические группы. Изучение механизма действия ингибиторов помогает химикам создавать новые лекарственные препараты.